cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A080054 G.f.: Product_{n >= 0} (1+x^(2n+1))/(1-x^(2n+1)).

Original entry on oeis.org

1, 2, 2, 4, 6, 8, 12, 16, 22, 30, 40, 52, 68, 88, 112, 144, 182, 228, 286, 356, 440, 544, 668, 816, 996, 1210, 1464, 1768, 2128, 2552, 3056, 3648, 4342, 5160, 6116, 7232, 8538, 10056, 11820, 13872, 16248, 18996, 22176, 25844, 30068, 34936, 40528
Offset: 0

Views

Author

Michael Somos, Jan 26 2003

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
G.f. for pairs of partitions of type R.
G.f. for the number of partitions of 2n in which all odd parts occur with multiplicity 2 and the even parts occur with multiplicity 1. Also g.f. for the number of partitions of 2n free of multiples of 4. All odd parts occur with even multiplicities. The even parts occur with multiplicity 1. - Noureddine Chair, Feb 10 2005
This is also the number of overpartitions of an integer into odd parts. - James Sellers, Feb 18 2008
The Higher Algebra reference on page 517 has an unnumbered example between 251 and 252: "If u^6-v^6+5u^2v^2(u^2-v^2)+4uv(1-u^4v^4)=0, prove that (u^2-v^2)^6=16u^2v^2(1-u^8)(1-v^8). [PEMB. COLL. CAMB.]". It turns out that this is two forms of the modular equation of degree 5. - Michael Somos, May 12 2011
Convolution of A000009 and A000700. - Vaclav Kotesovec, Aug 23 2015
Let F(x) = Product_{n >= 0} (1 + x^(2*n+1))/(1 - x^(2*n+1)). Let m be a nonzero integer. The simple continued fractions expansions of the real numbers F(1/m) may be predictable - given a positive integer n, the sequence of the n-th partial denominators of the continued fraction expansion of F(1/m) may be polynomial or quasi-polynomial in m for sufficiently large m. An example is given below. - Peter Bala, Nov 03 2019

Examples

			G.f. = 1 + 2*q + 2*q^2 + 4*q^3 + 6*q^4 + 8*q^5 + 12*q^6 + 16*q^7 + 22*q^8 + 30*q^9 + ...
From _Peter Bala_, Nov 03 2019: (Start)
F(x) := Product_{n >= 0} (1 + x^(2*n+1))/(1 - x^(2*n+1)).
Simple continued fraction expansions of F(1/(2*m)):
  m=2 [1; 1, 2, 1, 1, 1, 1, 2, 1, 2,   33, 1, 3,  7, 4,  33, 1, 8,  4,    2, 1,...]
  m=3 [1; 2, 2, 2, 1, 1, 2, 2, 2, 2,  110, 1, 2, 46, 3, 110, 1, 3, 12,    1, 7,...]
  m=4 [1; 3, 2, 3, 1, 1, 3, 2, 3, 2,  259, 1, 1,  1, 2,  15, 2, 1,  2,  259, 1,...]
  m=5 [1; 4, 2, 4, 1, 1, 4, 2, 4, 2,  504, 1, 1,  1, 1,  78, 1, 1,  2,  504, 1,...]
  m=6 [1; 5, 2, 5, 1, 1, 5, 2, 5, 2,  869, 1, 1,  2, 2,  23, 2, 2,  2,  869, 1,...]
  m=7 [1; 6, 2, 6, 1, 1, 6, 2, 6, 2, 1378, 1, 1,  2, 1, 110, 1, 2,  2, 1378, 1,...]
  m=8 [1; 7, 2, 7, 1, 1, 7, 2, 7, 2, 2055, 1, 1,  3, 2,  31, 2, 3,  2, 2055, 1,...]
  m=9 [1; 8, 2, 8, 1, 1, 8, 2, 8, 2, 2924, 1, 1,  3, 1, 142, 1, 3,  2, 2924, 1,...]
The sequence of the 10th partial denominators [33,110,259,504,...], starting at m = 2, appears to be given by the polynomial 4*m^3 + m - 1.
The sequence of the 15th partial denominators [15,78,23,110,31,142,...], starting at m = 4, appears to be quasi-polynomial in m, with constituent polynomials 4*m - 1 and 16*m - 2. (End)
		

References

  • B. C. Berndt, Ramanujan's theory of theta-functions, Theta functions: from the classical to the modern, Amer. Math. Soc., Providence, RI, 1993, pp. 1-63. MR 94m:11054.
  • A. Cayley, An Elementary Treatise on Elliptic Functions, 2nd ed., G. Bell and Sons, 1895, p. 245, Art. 333.
  • J. W. L. Glaisher, Identities, Messenger of Mathematics, 5 (1876), pp. 111-112. see Eq. VI
  • J. W. L. Glaisher, On Some Continued Fractions, Messenger of Mathematics, 7 (1878), pp. 67-68, see p. 68
  • H. S. Hall and S. R. Knight, Higher Algebra, Macmillan, 1957, p. 517.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-2) +add(2*b(n-i*j, i-2), j=1..n/i)))
        end:
    a:= n-> b(n, n-1+irem(n, 2)):
    seq(a(n), n=0..50);  # Alois P. Heinz, Feb 10 2014
    # alternative program using expansion of f(x, x^3) / f(-x, -x^3):
    with(gfun): series( add(x^(n*(2*n-1)), n = -8..8)/add((-1)^n*x^(n*(2*n-1)), n = -8..8), x, 100): seriestolist(%); # Peter Bala, Feb 05 2021
  • Mathematica
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (1 - m )^(-1/8), {q, 0, n}]]; (* Michael Somos, Aug 03 2011 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] / EllipticTheta[ 4, 0, q])^(1/2), {q, 0, n}]; (* Michael Somos, Aug 03 2011 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -q] / QPochhammer[ q], {q, 0, n}]; (* Michael Somos, May 10 2014 *)
    a[ n_] := SeriesCoefficient[ QHypergeometricPFQ[ {-1}, {}, q^2, q], {q, 0, n}]; (* Michael Somos, May 10 2014 *)
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 2] + Sum[2*b[n - i*j, i - 2], {j, 1, n/i}]]];
    a[n_] := b[n, n - 1 + Mod[n, 2]];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 05 2017, after Alois P. Heinz *)
  • PARI
    {a(n) = my(A, m); if( n<0, 0, m=1; A = 1 + 2*x + O(x^2); while( m
    				
  • PARI
    a(n)=polcoeff(exp(2*sum(k=0,n\2,sigma(2*k+1)/(2*k+1)*x^(2*k+1))),n) /* Paul D. Hanna */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 / (eta(x + A)^2 * eta(x^4 + A)), n))}; /* Michael Somos, Jul 07 2005 */

Formula

Expansion of f(q) / f(-q) in powers of q where f() is a Ramanujan theta function.
Expansion of (1 - k^2)^(-1/8) = k'^(-1/4) in powers of the nome q = exp(-Pi K'/K).
Expansion of eta(q^2)^3 / (eta(q^4) * eta(q)^2) in powers of q.
Euler transform of period 4 sequence [ 2, -1, 2, 0, ...].
(theta_3(q) / theta_4(q))^(1/2) = (phi(q) / phi(-q))^(1/2) = chi(q) / chi(-q) = psi(q) / psi(-q) = f(q) / f(-q) where phi{}, chi(), psi(), f() are Ramanujan theta functions.
G.f.: A(x) = exp( 2*sum_{n>=0} sigma(2*n+1)/(2*n+1)*x^(2*n+1) ). - Paul D. Hanna, Mar 01 2004
G.f. satisfies: A(-x) = 1/A(x), (A(x)+A(-x))/2 = A(x^2)*A(x^4)^2, A(x) = sqrt((A(x^2)^4+1)/2) + sqrt((A(x^2)^4-1)/2). - Paul D. Hanna, Mar 27 2004
Another g.f.: 1/product_{ k>= 1 } (1+x^(2*k))*(1-x^(2*k-1))^2. - Vladeta Jovovic, Mar 29 2004
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (u - v^3) * (v + 2*u^3) - u * (u^3 - v). - Michael Somos, Aug 03 2011
G.f. A(x) satisfies 0 = f(A(x), A(x^5)) where f(u, v) = (u^2 - v^2)^6 - 16 * u^2 * v^2 * (1 - u^8) * (1 - v^8). - Michael Somos, May 12 2011
G.f. A(x) satisfies 0 = f(A(x), A(x^7)) where f(u, v) = (1 - u^8) * (1 - v^8) - (1 - u*v)^8. - Michael Somos, Jan 01 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 2^(-1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A029838. - Michael Somos, Aug 03 2011
G.f.: (theta_3/theta_4)^(1/2) = ((Sum_{k in Z} x^(k^2))/(Sum_{k in Z} (-x)^(k^2)))^(1/2) = Product_{k>0} (1 - x^(4k-2))/((1 - x^(4k-1))(1 - x^(4k-3)))^2.
G.f.: Product_{ k >= 1 } (1 + x^(2*k-1))*(1 + x^k) = product_{ k >= 1 } (1 + x^(2*k-1))/(1 - x^(2*k-1)).
G.f.: 1 + 2*x / (1 - x) + 2*x^3 * (1 + x) / ((1 - x)*(1 - x^2)) + 2*x^6 * (1 + x)*(1 + x^2) / ((1 - x)*(1 - x^2)*(1 - x^3)) + ... [Glaisher 1876] - Michael Somos, Jun 20 2012
G.f.: 1 / (1 - 2*x / (1 + x - (x^2 - x^4) / (1 + x^3 - (x^3 - x^7) / (1 + x^5 - (x^4 - x^10) / (1 + x^7 - ...))))) [Glaisher 1878] - Michael Somos, Jun 24 2012
a(n) = (-1)^floor(n/2) * A080015(n) = (-1)^n * A108494(n). Convolution inverse is A108494. Convolution square is A007096.
Empirical : Sum_{n>=0} exp(-Pi)^n * a(n) = 2^(1/8). - Simon Plouffe, Feb 20 2011
Empirical : Sum_{n>=0} (-exp(-Pi))^n * a(n) = 1/2^(1/8). - Simon Plouffe, Feb 20 2011
a(n) ~ Pi * BesselI(1, Pi*sqrt(n/2)) / (4*sqrt(n)) ~ exp(Pi*sqrt(n/2)) / (2^(9/4) * n^(3/4)) * (1 - 3/(4*Pi*(sqrt(2*n))) - 15/(64*Pi^2*n)). - Vaclav Kotesovec, Aug 23 2015, extended Jan 09 2017
Simon Plouffe's empirical observations are true. Furthermore, for every positive rational p, Sum_{n>=0} exp(-Pi*sqrt(p))^n * a(n) = 1/(Sum_{n>=0} (-exp(-Pi*sqrt(p)))^n * a(n)) is an algebraic number (see the MathOverflow link). - Vladimir Reshetnikov, Nov 23 2016
G.f.: f(x,x^3)/f(-x,-x^3) = ( Sum_{n = -oo..oo} x^(n*(2*n-1)) )/( Sum_{n = -oo..oo} (-1)^n*x^(n*(2*n-1)) ), where f(a,b) = Sum_{n = -oo..oo} a^(n*(n+1)/2)*b^(n*(n-1)/2) is Ramanujan's 2-variable theta function. - Peter Bala, Feb 05 2021
G.f. A(q) = (-lambda(-q)/lambda(q))^(1/8), where lambda(q) = 16*q - 128*q^2 + 704*q^3 - 3072*q^4 + ... is the elliptic modular function in powers of the nome q = exp(i*Pi*t), the g.f. of A115977; lambda(q) = k(q)^2, where k(q) = (theta_2(q) / theta_3(q))^2 is the elliptic modulus. - Peter Bala, Sep 26 2023
Recurrence: a(n) = c(n) + Sum_{k = 1..floor((-1 + sqrt(1 + 8*n))/2)} (-1)^(1 + k*(k+1)/2) * a(n - k*(k+1)/2), where c(n) = 1 if n is a triangular number, otherwise c(n) = 0. See A010054. - Peter Bala, Jun 08 2025

Extensions

Definition simplified by N. J. A. Sloane, Apr 24 2014

A098151 Number of partitions of 2*n with no part divisible by 3 and all odd parts occurring with even multiplicities.

Original entry on oeis.org

1, 2, 4, 6, 10, 16, 24, 36, 52, 74, 104, 144, 198, 268, 360, 480, 634, 832, 1084, 1404, 1808, 2316, 2952, 3744, 4728, 5946, 7448, 9294, 11556, 14320, 17688, 21780, 26740, 32736, 39968, 48672, 59122, 71644, 86616, 104484, 125768, 151072, 181104, 216684
Offset: 0

Views

Author

Noureddine Chair, Aug 29 2004

Keywords

Comments

There are no partitions of 2n+1 in which all odd parts occur with even multiplicity. - Michael Somos, Apr 15 2012
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
a(n) is also the number of Schur overpartitions of n, i.e., the number of overpartitions of n where adjacent parts differ by at least 3 if the smaller is overlined or divisible by 3 and adjacent parts differ by at least 6 if the smaller is overlined and divisible by 3. - Jeremy Lovejoy, Mar 23 2015
Let A(q) denote the g.f. of this sequence. Let m be a nonzero integer. The simple continued fraction expansions of the real numbers A(1/(2*m)) and A(1/(2*m+1)) may be predictable. For a given positive integer n, the sequence of the n-th partial denominators of the continued fractions are conjecturally polynomial or quasi-polynomial in m for m sufficiently large. An example is given below. Cf. A080054. - Peter Bala, Jun 09 2025

Examples

			a(4)=10 because 8 = 4+4 = 4+2+2=2+2+2+2 = 2+2+2+1+1 = 2+2+1+1+1+1 = 4+2+1+1 = 4+1+1+1+1 = 2+1+1+1+1+1+1 = 1+1+1+1+1+1+1+1.
G.f. = 1 + 2*q + 4*q^2 + 6*q^3 + 10*q^4 + 16*q^5 + 24*q^6 + 36*q^7 + 52*q^8 + ...
From _Peter Bala_, Jun 09 2025: (Start)
G.f.: A(q) = f(q, q^2) / f(-q, -q^2).
Simple continued fraction expansions of A(1/(2*m)):
m =  2  [1;  1   9  1    5    8    45   4  1  2  1  1  1  3  3   2  2 ...]
m =  3  [1;  2  13  1   14   12   133   8  1  1  7  2  1  2  2   1  1 ...]
m =  4  [1;  3  17  1   27   16   297  12  2  2  1  1  1  2  2   2  2 ...]
m =  5  [1;  4  21  1   44   20   561  16  2  1  7  3  3  2  2  25  8 ...]
m =  6  [1;  5  25  1   65   24   949  20  3  2  1  1  1  3  4   2  1 ...]
m =  7  [1;  6  29  1   90   28  1485  24  3  1  7  4  5  2  1   1  6 ...]
m =  8  [1;  7  33  1  119   32  2193  28  4  2  1  1  1  4  6   2  1 ...]
m =  9  [1;  8  37  1  152   36  3097  32  4  1  7  5  7  2  1   1  3 ...]
m = 10  [1;  9  41  1  189   40  4221  36  5  2  1  1  1  5  8   2  1 ...]
...
The sequence of the 4th partial denominators [5, 14, 27, 44, ...] appears to be given by the polynomial (2*m + 1)*(m - 1) for m >= 2.
The sequence of the 6th partial denominators [45, 133, 297, 561, ...] appears to be given by the polynomial (2*m + 1)*(2*m^2 + 1) for m >= 2. (End)
		

Crossrefs

Programs

  • Maple
    series(product((1+x^k+x^(2*k))/(1-x^k+x^(2*k)),k=1..150),x=0,100);
    # alternative program using expansion of f(q, q^2) / f(-q, -q^2):
    with(gfun): series( add(x^(n*(3*n-1)/2),n = -8..8)/add((-1)^n*x^(n*(3*n-1)/2), n = -8..8), x, 100): seriestolist(%); # Peter Bala, Feb 05 2021
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q^2] QPochhammer[ q^3]^2 / (QPochhammer[ q]^2 QPochhammer[ q^6]), {q, 0, n}] (* Michael Somos, Oct 23 2013 *)
    nmax = 50; CoefficientList[Series[Product[(1+x^(3*k-1)) * (1+x^(3*k-2)) / ((1-x^(3*k-1)) * (1-x^(3*k-2))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^2 / (eta(x + A)^2 * eta(x^6 + A)), n))} /* Michael Somos, Dec 04 2004 */

Formula

Expansion of phi(-q^3) / phi(-q) in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Apr 15 2012
Expansion of f(q, q^2) / f(-q, -q^2) in powers of q where f(,) is the Ramanujan two-variable theta function. - Michael Somos, Apr 15 2012
Expansion of eta(q^2) * eta(q^3)^2 / (eta(q)^2 * eta(q^6)) in powers of q.
G.f. = (Sum_{n = -oo..oo} (-1)^n*q^(3*n^2)) / (Sum_{n = -oo..oo} (-1)^n*q^(n^2)). - N. J. A. Sloane, Aug 09 2016
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (1 + u^2) * (u^2 + v^4) - 4 * u^2*v^4. - Michael Somos, Apr 15 2012
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = u^3 - v + 3 * u*v^2 - 3 * u^2*v^3. - Michael Somos, Dec 04 2004
Euler transform of period 6 sequence [2, 1, 0, 1, 2, 0, ...]. - Vladeta Jovovic, Sep 24 2004
Taylor series of product_{k=1..inf}(1+x^k+x^(2*k))/(1-x^k+x^(2*k))= product_{k=1..inf}(1+x^k)(1-x^(3k))/((1-x^k)(1+x^(3k)))=Theta_4(0, x^3)/theta_4(0, x)
a(n) ~ Pi * BesselI(1, Pi*sqrt(2*n/3)) / (3*sqrt(2*n)) ~ exp(Pi*sqrt(2*n/3)) / (2^(5/4) * 3^(3/4) * n^(3/4)) * (1 - 3*sqrt(3)/(8*Pi*sqrt(2*n)) - 45/(256*Pi^2*n)). - Vaclav Kotesovec, Aug 31 2015, extended Jan 09 2017
Convolution of A000726 and A003105. - R. J. Mathar, Nov 17 2017
From Peter Bala, Jun 09 2025: (Start)
G.f.: A(q) = Sum_{n = -oo..oo} q^(n*(3*n+1)/2) / Sum_{n = -oo..oo} (-1)^n * q^(n*(3*n+1)/2).
Recurrences:
a(n) - a(n-1) - a(n-2) + a(n-5) + a(n-7) - a(n-12) - a(n-15) + + - - ... = f(n), where [0, 1, 2, 5, 7, 12, 15, ...] is the sequence of generalized pentagonal numbers A001318, a(n) is set equal to 0 for negative n and f(n) = 1 if n is a generalized pentagonal number, otherwise f(n) = 0 (see A080995). Compare with the recurrence for the partition function p(n) = A000041(n).
a(n) - 2*a(n-1) + 2*a(n-4) - 2*a(n-9) + 2*a(n-16) - 2*a(n-25) + - ... = g(n), where g(n) = 2*(-1)^k if n is of the form 3*(k^2), otherwise g(n) = 0. (End)
Showing 1-2 of 2 results.