cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 40 results. Next

A169975 Expansion of Product_{i>=0} (1 + x^(4*i+1)).

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 3, 2, 0, 1, 3, 3, 1, 1, 4, 4, 1, 1, 4, 5, 2, 1, 5, 7, 3, 1, 5, 8, 5, 2, 6, 10, 6, 2, 6, 12, 9, 3, 7, 14, 11, 4, 7, 16, 15, 6, 8, 19, 18, 8, 9, 21, 23, 11, 10, 24, 27, 14, 11, 27, 34, 19, 13, 30, 39, 24, 15, 33, 47, 31, 18, 37, 54, 38
Offset: 0

Views

Author

N. J. A. Sloane, Aug 29 2010

Keywords

Comments

Number of partitions into distinct parts of the form 4*k+1.
In general, if a > 0, b > 0, GCD(a,b) = 1 and g.f. = Product_{k>=0} (1 + x^(a*k + b)), then a(n) ~ exp(Pi*sqrt(n/(3*a))) / (2^(1 + b/a) * (3*a)^(1/4) * n^(3/4)) [Meinardus, 1954]. - Vaclav Kotesovec, Aug 26 2015
Convolution of A147599 and A169975 is A000700. - Vaclav Kotesovec, Jan 18 2017

Crossrefs

Programs

  • Mathematica
    nmax = 200; CoefficientList[Series[Product[(1 + x^(4*k+1)), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 26 2015 *)
    nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[If[Mod[k, 4] == 1, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 18 2017 *)

Formula

G.f.: Sum_{n>=0} (x^(2*n^2 - n) / Product_{k=1..n} (1 - x^(4*k))). - Joerg Arndt, Mar 10 2011
G.f.: G(0)/x where G(k) = 1 - 1/(1 - 1/(1 - 1/(1+(x)^(4*k+1))/G(k+1) )); (recursively defined continued fraction, see A006950). - Sergei N. Gladkovskii, Jan 28 2013
a(n) ~ exp(Pi*sqrt(n)/(2*sqrt(3))) / (2^(7/4) * 3^(1/4) * n^(3/4)) * (1 - (3*sqrt(3)/(4*Pi) + Pi/(192*sqrt(3))) / sqrt(n)). - Vaclav Kotesovec, Aug 26 2015, extended Jan 18 2017

A261612 Expansion of Product_{k>=0} (1 + x^(3*k+1)).

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 2, 1, 1, 3, 2, 1, 3, 3, 2, 4, 4, 2, 4, 5, 3, 5, 7, 4, 5, 8, 6, 7, 10, 7, 7, 12, 10, 9, 14, 12, 10, 16, 16, 13, 19, 19, 15, 22, 24, 19, 25, 28, 22, 29, 35, 28, 33, 40, 33, 38, 48, 41, 44, 55, 48, 51, 66, 59, 58, 74, 69
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 26 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(3*k+1)), {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[If[Mod[k, 3] == 1, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}];], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 13 2017 *)

Formula

a(n) ~ exp(Pi*sqrt(n)/3) / (2^(4/3) * sqrt(3) * n^(3/4)) * (1 - (Pi/144 + 9/(8*Pi)) / sqrt(n)). - Vaclav Kotesovec, Aug 26 2015, extended Jan 16 2017
G.f.: Sum_{k>=0} x^(k*(3*k - 1)/2) / Product_{j=1..k} (1 - x^(3*j)). - Ilya Gutkovskiy, Nov 24 2020

A007096 Expansion of theta_3 / theta_4.

Original entry on oeis.org

1, 4, 8, 16, 32, 56, 96, 160, 256, 404, 624, 944, 1408, 2072, 3008, 4320, 6144, 8648, 12072, 16720, 22976, 31360, 42528, 57312, 76800, 102364, 135728, 179104, 235264, 307672, 400704, 519808, 671744, 864960, 1109904, 1419456, 1809568, 2299832
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number of partitions of 2n into parts with 2 types c, c* of each part. The even parts appears with multiplicity 1 for each type. The odd parts appears with multiplicity 2 (cc or c*c* but not cc*, that is, no mixing is allowed). E.g., a(4)=8 because of 44*, 22*, 211, 21*1*, 2*1*1*, 2*11, 111*1*. - Noureddine Chair, Jan 27 2005
a(n) is the number of pairs of overpartitions into odd parts where the sum of all parts is equal to n. - Jeremy Lovejoy, Aug 29 2020

Examples

			G.f. = 1 + 4*q + 8*q^2 + 16*q^3 + 32*q^4 + 56*q^5 + 96*q^6 + 160*q^7 + 256*q^8 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102.
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; Eq. (34.3).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Self-convolution of A080054. - Vladeta Jovovic, Mar 22 2005

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] / EllipticTheta[ 4, 0, q], {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (1 - m)^(-1/4), {q, 0, n}]]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[( QPochhammer[ -q, q^2] / QPochhammer[ q, q^2])^2, {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[ (Product[ 1 - (-q)^k, {k, n}] / Product[ 1 - q^k, {k, n}])^2, {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    nmax=60; CoefficientList[Series[Product[((1+x^(2*k+1))/(1-x^(2*k+1)))^2, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 28 2015 *)
  • PARI
    {a(n) = my(A, B); if( n<0, 0, A = 1 + 4*x; for( k=2, n, B = A + x^2 * O(x^k); A += Pol(2 * subst(B, x, x^2)^2 - B - 1/B) / x / 8); polcoeff(A, n))}; /* Michael Somos, Jul 07 2005*/
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 / (eta(x + A)^2 * eta(x^4 + A)))^2, n))}; /* Michael Somos, Jan 01 2006 */

Formula

Euler transform of period 4 sequence [4, -2, 4, 0, ...]. - Vladeta Jovovic, Mar 22 2005
Expansion of eta(q^2)^6 /(eta(q)^4 * eta(q^4)^2) in powers of q.
Expansion of phi(q) / phi(-q) = chi(q)^2 / chi(-q)^2 = psi(q)^2 / psi(-q)^2 = phi(-q^2)^2 / phi(-q)^2 = phi(q)^2 / phi(-q^2)^2 = chi(-q^2)^2 / chi(-q)^4 = chi(q)^4 / chi(-q^2)^2 = f(q)^2 / f(-q)^2 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (1 - u^4) * (1 - v^4) - (1 - u*v)^4. - Michael Somos, Jan 01 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = (1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A028939.
Expansion of Jacobian elliptic function 1 / sqrt(k') in powers of q. - see Fine.
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = 1 + u^2 - 2*u*v^2. - Michael Somos, Jul 07 2005
Unique solution to f(x^2)^2 = (f(x) + 1 / f(x)) / 2 and f(0)=1, f'(0) nonzero.
G.f.: theta_3 / theta_4 = (Sum_{k} x^k^2) / (Sum_{k} (-x)^k^2) = (Product_{k>0} (1 - x^(4*k - 2)) / ((1 - x^(4*k - 1)) * (1 - x^(4*k - 3)))^2)^2.
A097243(n) = a(4*n). 8*A022577(n) = a(4*n + 2). a(n) = 4*A123655(n) if n>0. Convolution square of A080054.
Empirical: sum(exp(-Pi)^(n-1)*a(n),n=1..infinity) = 2^(1/4). - Simon Plouffe, Feb 20 2011
Empirical : sum(exp(-Pi*sqrt(2))^(n-1)*(-1)^(n+1)*a(n),n=1..infinity) = (-2+2*2^(1/2))^(1/4). - Simon Plouffe, Feb 20 2011
Empirical : sum(exp(-2*Pi)^(n-1)*a(n),n=1..infinity) = 1/2*(8+6*2^(1/2))^(1/4). - Simon Plouffe, Feb 20 2011
a(n) ~ exp(Pi*sqrt(n)) / (4*sqrt(2)*n^(3/4)). - Vaclav Kotesovec, Aug 28 2015
G.f.: exp(4*Sum_{k>=1} sigma(2*k - 1)*x^(2*k-1)/(2*k - 1)). - Ilya Gutkovskiy, Apr 19 2019

A098151 Number of partitions of 2*n with no part divisible by 3 and all odd parts occurring with even multiplicities.

Original entry on oeis.org

1, 2, 4, 6, 10, 16, 24, 36, 52, 74, 104, 144, 198, 268, 360, 480, 634, 832, 1084, 1404, 1808, 2316, 2952, 3744, 4728, 5946, 7448, 9294, 11556, 14320, 17688, 21780, 26740, 32736, 39968, 48672, 59122, 71644, 86616, 104484, 125768, 151072, 181104, 216684
Offset: 0

Views

Author

Noureddine Chair, Aug 29 2004

Keywords

Comments

There are no partitions of 2n+1 in which all odd parts occur with even multiplicity. - Michael Somos, Apr 15 2012
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
a(n) is also the number of Schur overpartitions of n, i.e., the number of overpartitions of n where adjacent parts differ by at least 3 if the smaller is overlined or divisible by 3 and adjacent parts differ by at least 6 if the smaller is overlined and divisible by 3. - Jeremy Lovejoy, Mar 23 2015
Let A(q) denote the g.f. of this sequence. Let m be a nonzero integer. The simple continued fraction expansions of the real numbers A(1/(2*m)) and A(1/(2*m+1)) may be predictable. For a given positive integer n, the sequence of the n-th partial denominators of the continued fractions are conjecturally polynomial or quasi-polynomial in m for m sufficiently large. An example is given below. Cf. A080054. - Peter Bala, Jun 09 2025

Examples

			a(4)=10 because 8 = 4+4 = 4+2+2=2+2+2+2 = 2+2+2+1+1 = 2+2+1+1+1+1 = 4+2+1+1 = 4+1+1+1+1 = 2+1+1+1+1+1+1 = 1+1+1+1+1+1+1+1.
G.f. = 1 + 2*q + 4*q^2 + 6*q^3 + 10*q^4 + 16*q^5 + 24*q^6 + 36*q^7 + 52*q^8 + ...
From _Peter Bala_, Jun 09 2025: (Start)
G.f.: A(q) = f(q, q^2) / f(-q, -q^2).
Simple continued fraction expansions of A(1/(2*m)):
m =  2  [1;  1   9  1    5    8    45   4  1  2  1  1  1  3  3   2  2 ...]
m =  3  [1;  2  13  1   14   12   133   8  1  1  7  2  1  2  2   1  1 ...]
m =  4  [1;  3  17  1   27   16   297  12  2  2  1  1  1  2  2   2  2 ...]
m =  5  [1;  4  21  1   44   20   561  16  2  1  7  3  3  2  2  25  8 ...]
m =  6  [1;  5  25  1   65   24   949  20  3  2  1  1  1  3  4   2  1 ...]
m =  7  [1;  6  29  1   90   28  1485  24  3  1  7  4  5  2  1   1  6 ...]
m =  8  [1;  7  33  1  119   32  2193  28  4  2  1  1  1  4  6   2  1 ...]
m =  9  [1;  8  37  1  152   36  3097  32  4  1  7  5  7  2  1   1  3 ...]
m = 10  [1;  9  41  1  189   40  4221  36  5  2  1  1  1  5  8   2  1 ...]
...
The sequence of the 4th partial denominators [5, 14, 27, 44, ...] appears to be given by the polynomial (2*m + 1)*(m - 1) for m >= 2.
The sequence of the 6th partial denominators [45, 133, 297, 561, ...] appears to be given by the polynomial (2*m + 1)*(2*m^2 + 1) for m >= 2. (End)
		

Crossrefs

Programs

  • Maple
    series(product((1+x^k+x^(2*k))/(1-x^k+x^(2*k)),k=1..150),x=0,100);
    # alternative program using expansion of f(q, q^2) / f(-q, -q^2):
    with(gfun): series( add(x^(n*(3*n-1)/2),n = -8..8)/add((-1)^n*x^(n*(3*n-1)/2), n = -8..8), x, 100): seriestolist(%); # Peter Bala, Feb 05 2021
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q^2] QPochhammer[ q^3]^2 / (QPochhammer[ q]^2 QPochhammer[ q^6]), {q, 0, n}] (* Michael Somos, Oct 23 2013 *)
    nmax = 50; CoefficientList[Series[Product[(1+x^(3*k-1)) * (1+x^(3*k-2)) / ((1-x^(3*k-1)) * (1-x^(3*k-2))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^2 / (eta(x + A)^2 * eta(x^6 + A)), n))} /* Michael Somos, Dec 04 2004 */

Formula

Expansion of phi(-q^3) / phi(-q) in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Apr 15 2012
Expansion of f(q, q^2) / f(-q, -q^2) in powers of q where f(,) is the Ramanujan two-variable theta function. - Michael Somos, Apr 15 2012
Expansion of eta(q^2) * eta(q^3)^2 / (eta(q)^2 * eta(q^6)) in powers of q.
G.f. = (Sum_{n = -oo..oo} (-1)^n*q^(3*n^2)) / (Sum_{n = -oo..oo} (-1)^n*q^(n^2)). - N. J. A. Sloane, Aug 09 2016
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (1 + u^2) * (u^2 + v^4) - 4 * u^2*v^4. - Michael Somos, Apr 15 2012
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = u^3 - v + 3 * u*v^2 - 3 * u^2*v^3. - Michael Somos, Dec 04 2004
Euler transform of period 6 sequence [2, 1, 0, 1, 2, 0, ...]. - Vladeta Jovovic, Sep 24 2004
Taylor series of product_{k=1..inf}(1+x^k+x^(2*k))/(1-x^k+x^(2*k))= product_{k=1..inf}(1+x^k)(1-x^(3k))/((1-x^k)(1+x^(3k)))=Theta_4(0, x^3)/theta_4(0, x)
a(n) ~ Pi * BesselI(1, Pi*sqrt(2*n/3)) / (3*sqrt(2*n)) ~ exp(Pi*sqrt(2*n/3)) / (2^(5/4) * 3^(3/4) * n^(3/4)) * (1 - 3*sqrt(3)/(8*Pi*sqrt(2*n)) - 45/(256*Pi^2*n)). - Vaclav Kotesovec, Aug 31 2015, extended Jan 09 2017
Convolution of A000726 and A003105. - R. J. Mathar, Nov 17 2017
From Peter Bala, Jun 09 2025: (Start)
G.f.: A(q) = Sum_{n = -oo..oo} q^(n*(3*n+1)/2) / Sum_{n = -oo..oo} (-1)^n * q^(n*(3*n+1)/2).
Recurrences:
a(n) - a(n-1) - a(n-2) + a(n-5) + a(n-7) - a(n-12) - a(n-15) + + - - ... = f(n), where [0, 1, 2, 5, 7, 12, 15, ...] is the sequence of generalized pentagonal numbers A001318, a(n) is set equal to 0 for negative n and f(n) = 1 if n is a generalized pentagonal number, otherwise f(n) = 0 (see A080995). Compare with the recurrence for the partition function p(n) = A000041(n).
a(n) - 2*a(n-1) + 2*a(n-4) - 2*a(n-9) + 2*a(n-16) - 2*a(n-25) + - ... = g(n), where g(n) = 2*(-1)^k if n is of the form 3*(k^2), otherwise g(n) = 0. (End)

A261610 Expansion of Product_{k>=0} (1 + x^(3*k+1))/(1 - x^(3*k+1)).

Original entry on oeis.org

1, 2, 2, 2, 4, 6, 6, 8, 12, 14, 16, 22, 28, 32, 40, 50, 58, 70, 86, 100, 118, 144, 168, 194, 232, 272, 312, 366, 428, 490, 568, 660, 754, 866, 1000, 1140, 1300, 1492, 1696, 1924, 2196, 2490, 2812, 3192, 3610, 4062, 4588, 5174, 5806, 6530, 7342, 8218, 9208
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 26 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[(1 + x^(3*k+1))/(1 - x^(3*k+1)), {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(n/3)) * Gamma(1/3) / (2^(5/3) * 3^(1/3) * Pi^(2/3) * n^(2/3)).

A320968 Expansion of (Product_{k>0} theta_3(q^k)/theta_4(q^k))^(1/2), where theta_3() and theta_4() are the Jacobi theta functions.

Original entry on oeis.org

1, 2, 4, 10, 18, 34, 64, 110, 188, 320, 524, 846, 1358, 2130, 3308, 5102, 7750, 11674, 17468, 25862, 38022, 55558, 80532, 116034, 166284, 236784, 335416, 472868, 663146, 925762, 1286920, 1780962, 2454792, 3370806, 4610656, 6284090, 8535868, 11554834, 15591564
Offset: 0

Views

Author

Seiichi Manyama, Oct 25 2018

Keywords

Crossrefs

Cf. A000122, A002448, A080054 ((theta_3(q^k)/theta_4(q^k))^(1/2)), A320098, A320967, A320992.

Programs

  • Mathematica
    CoefficientList[Series[1/Product[EllipticTheta[4, 0, q^(2*k - 1)], {k, 1, 50}], {q, 0, 80}], q] (* G. C. Greubel, Oct 29 2018 *)
  • PARI
    q='q+O('q^80); Vec(prod(k=1,50, eta(q^(2*k))^3/(eta(q^k)^2* eta(q^(4*k))) )) \\ G. C. Greubel, Oct 29 2018

Formula

a(n) = (-1)^n * A320098(n).
Expansion of Product_{k>0} eta(q^(2*k))^3 / (eta(q^k)^2*eta(q^(4*k))).
Expansion of Product_{k>0} 1/theta_4(q^(2*k-1)).

A261611 Expansion of Product_{k>=0} (1 + x^(4*k+1))/(1 - x^(4*k+1)).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 6, 6, 6, 8, 12, 14, 14, 16, 22, 28, 30, 32, 40, 50, 56, 60, 70, 86, 98, 106, 120, 144, 166, 180, 200, 234, 270, 296, 324, 372, 428, 472, 514, 580, 664, 736, 800, 890, 1010, 1124, 1222, 1346, 1514, 1684, 1834, 2008, 2240, 2488, 2712, 2956
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 26 2015

Keywords

Comments

In general, if a > 0, b > 0, GCD(a,b) = 1 and g.f. = Product_{k>=0} (1 + x^(a*k+b))/(1 - x^(a*k+b)), then a(n) ~ Gamma(b/a) * a^(b/(2*a) - 1/2) * Pi^(b/a - 1) * exp(Pi*sqrt(n/a)) / (2^(2*b/a + 1) * n^(b/(2*a) + 1/2)).

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[(1 + x^(4*k+1))/(1 - x^(4*k+1)), {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(n)/2) * Gamma(1/4) / (2^(9/4) * Pi^(3/4) * n^(5/8)).

A115671 Number of partitions of n into parts not congruent to 0, 2, 12, 14, 16, 18, 20, 30 (mod 32).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 11, 15, 20, 26, 34, 44, 56, 72, 91, 114, 143, 178, 220, 272, 334, 408, 498, 605, 732, 884, 1064, 1276, 1528, 1824, 2171, 2580, 3058, 3616, 4269, 5028, 5910, 6936, 8124, 9498, 11088, 12922, 15034, 17468, 20264, 23472, 27154, 31369
Offset: 0

Views

Author

Michael Somos, Jan 29 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Andrews (1987) refers to this sequence as p(S, n) where S is the set in equation (1) on page 437.

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 11*x^8 + 15*x^9 + ...
a(5) = 4 since 5 = 4 + 1 = 3 + 1 + 1 = 1 + 1 + 1 + 1 + 1 in 4 ways.
a(6) = 6 since 6 = 5 + 1 = 4 + 1 + 1 = 3 + 3 = 3 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1 in 6 ways.
		

Crossrefs

Programs

  • Haskell
    a115671 = p [x | x <- [0..], (mod x 32) `notElem` [0,2,12,14,16,18,20,30]]
       where p _          0 = 1
             p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Mar 03 2012
  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ -q] / QPochhammer[ q] + 1) / 2, {q, 0, n}]; (* Michael Somos, Nov 09 2014 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q^2]^3 / QPochhammer[ q]^2 / QPochhammer[ q^4] + 1) / 2, {q, 0, n}]; (* Michael Somos, Nov 09 2014 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 + eta(x^2 + A)^3 / (eta(x + A)^2 * eta(x^4 + A))) / 2, n))};
    

Formula

Expansion of (f(q) / f(-q) + 1) / 2 in powers of q where f() is a Ramanujan theta function.
Expansion of f(q^6, q^10) / f(-q, -q^3) = (f(q^22, q^26) - q^2 * f(q^10, q^38)) / f(-q, -q^2) in powers of x where f() is Ramanujan's two-variable theta function.
Euler transform of period 32 sequence [ 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, ...].
Given g.f. A(x), then B(x) = (2*A(x) - 1)^2 = g.f. A007096 satisfies 0 = f(B(x), B(x^2)) where f(u, v) = 1 + u^2 - 2 * u * v^2.
G.f. (1 + sqrt( theta_3(x) / theta_4(x))) / 2 = (Sum_{k} x^(8*k^2 - 2*k)) / (Sum_{k} (-x)^(2*k^2 - k)) = (Sum_{k} x^(24*n^2 + 2*n) - x^(24*n^2 + 14*n + 2)) / (Product_{k>0} 1 - x^k).
2 * a(n) = A080054(n) unless n = 0. a(2*n + 2) = A208851(n). a(2*n + 1) = A187154(n). a(n + 1) = A208856(n).

A080015 Expansion of theta_3(q) / theta_3(q^2) in powers of q.

Original entry on oeis.org

1, 2, -2, -4, 6, 8, -12, -16, 22, 30, -40, -52, 68, 88, -112, -144, 182, 228, -286, -356, 440, 544, -668, -816, 996, 1210, -1464, -1768, 2128, 2552, -3056, -3648, 4342, 5160, -6116, -7232, 8538, 10056, -11820, -13872, 16248, 18996, -22176, -25844, 30068
Offset: 0

Views

Author

Michael Somos, Jan 20 2003

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q - 2*q^2 - 4*q^3 + 6*q^4 + 8*q^5 - 12*q^6 - 16*q^7 + 22*q^8 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 214 Entry 24(ii).

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] / EllipticTheta[ 3, 0, q^2], {q, 0, n}]; (* Michael Somos, Apr 24 2015 *)
  • PARI
    {a(n) = my(A, m); if( n<0, 0, m=1; A = 1 + 2 * x + O(x^2); while( m
    				
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^8 + A) / eta(x + A))^2 * (eta(x^2 + A) / eta(x^4 + A))^7, n))};

Formula

Expansion of phi(q) / phi(q^2) in powers of q where phi() is a Ramanujan theta function.
Expansion of eta(q^2)^7 * eta(q^8)^2 / (eta(q)^2 * eta(q^4)^7) in powers of q.
Euler transform of period 8 sequence [ 2, -5, 2, 2, 2, -5, 2, 0, ...].
G.f.: A(x)/B(x), where A(x) = Sum_{m = -infinity..infinity} x^(m^2) and B(x) = Sum_{m = -infinity..infinity} x^(2*m^2). - Vladeta Jovovic, Mar 22 2005
Expansion of phi(x) / phi(x^2) where phi() is a Ramanujan theta function.
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = 1 + (1 - u*v)^2 - v^2. - Michael Somos, Jan 31 2006
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = u^4 - v^4 + 8 * u*v - 6 * u*v * (u^2 + v^2) + 4 * (u*v)^3. - Michael Somos, Jan 31 2006
Expansion of sqrt(m) in powers of q where m is the multiplier for the second degree modular equation.
G.f.: Prod_{k>0} ((1 - x^(8*k - 2)) * (1 - x^(8*k - 6)))^5 / ((1 - x^(8*k - 1)) * (1 - x^(8*k - 3)) * (1 - x^(8*k - 4)) * (1 - x^(8*k - 5)) * (1 - x^(8*k - 7)))^2.
a(n) = (-1)^n * A210030(n). a(n) = (-1)^[n/2] * A080054(n).

A108494 Expansion of f(-q) / f(q) in powers of q where f() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 2, -4, 6, -8, 12, -16, 22, -30, 40, -52, 68, -88, 112, -144, 182, -228, 286, -356, 440, -544, 668, -816, 996, -1210, 1464, -1768, 2128, -2552, 3056, -3648, 4342, -5160, 6116, -7232, 8538, -10056, 11820, -13872, 16248, -18996, 22176, -25844, 30068, -34936, 40528
Offset: 0

Views

Author

Michael Somos, Jun 06 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 - 2*q + 2*q^2 - 4*q^3 + 6*q^4 - 8*q^5 + 12*q^6 - 16*q^7 + 22*q^8 - ...
		

References

  • T. Miwa, Integrable Lattice Models and Branching Coefficients, Proceedings of the International Congress of Mathematicians, Vol. 1, (Berkeley, Calif., 1986), 862-870, Amer. Math. Soc., Providence, RI, 1987. MR0934288 (89h:82051)

Crossrefs

Cf. A080054.

Programs

  • Mathematica
    CoefficientList[QPochhammer[q]/QPochhammer[-q] + O[q]^50, q] (* Jean-François Alcover, Nov 05 2015 *)
  • PARI
    {a(n) = if(n<0, 0, polcoeff( prod(k=1, (n+1)\2, (1 - x^(2*k -1)) / (1 + x^(2*k - 1)), 1 + x * O(x^n)), n))}
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A) / eta(x^2 + A)^3, n))}

Formula

Expansion of (1 - k^2)^(1/8) = k'^(1/4) in powers of q = exp(-Pi K'/K).
Expansion of (theta_4(q) / theta_3(q))^(1/2) = (phi(-q) / phi(q))^(1/2) = chi(-q) / chi(q) = psi(-q) / psi(q) = f(-q) / f(q) where phi(), chi(), psi(), f() are Ramanujan theta functions.
Expansion of eta(q)^2 eta(q^4) / eta(q^2)^3 in powers of q.
Euler transform of period 4 sequence [ -2, 1, -2, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = -2*u^2 + v^4 + u^4*v^4.
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = u^4 + 2*u*v -2*u^3*v^3 - v^4.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = -2*u + v*w^2 + u^2*v*w^2.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^2*u2*u6 - 2*u1*u3 + u2*u3^2*u6.
G.f. A(x) satisfies 0 = f(A(x), A(x^5)) where f(u, v) = 4 * u*v *(1 - u^4) * (1 + v^4) - (v^2 - u^2) * (u + v)^4. - Michael Somos, Sep 11 2006
G.f. A(x) satisfies 0 = f(A(x), A(x^7)) where f(u, v) = (1 - u^8) * (1 - v^8) - (1 - u*v)^8. - Michael Somos, Jan 01 2006
G.f.: Product_{k>0} (1 - x^(2*k - 1)) / (1 + x^(2*k - 1)).
a(n) = (-1)^n * A080054(n). Convolution inverse of A080054.
Empirical: sum(exp(-Pi)^(n-1)*(-1)^(n+1)*a(n),n=1..infinity) = 2^(1/8). - Simon Plouffe, Feb 20 2011
Empirical: sum(exp(-Pi)^(n-1)*a(n),n=1..infinity) = 2^(7/8)/2. - Simon Plouffe, Feb 20 2011
a(n) ~ (-1)^n * exp(Pi*sqrt(n/2)) / (2^(9/4) * n^(3/4)). - Vaclav Kotesovec, Oct 23 2017
G.f.: exp(-2*Sum_{k>=1} sigma(2*k - 1)*x^(2*k-1)/(2*k - 1)). - Ilya Gutkovskiy, Apr 19 2019
Showing 1-10 of 40 results. Next