A261738 Number of partitions of n where each part i is marked with a word of length i over a quaternary alphabet whose letters appear in alphabetical order.
1, 4, 26, 124, 631, 2780, 12954, 55196, 241634, 1012196, 4280046, 17636252, 73157709, 298342936, 1220952044, 4947485904, 20079338277, 80987461760, 326986050564, 1314939934216, 5290893771329, 21236552526364, 85263892578686, 341801704446572, 1370448001291679
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Column k=4 of A261718.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i)*binomial(i+3, 3)))) end: a:= n-> b(n$2): seq(a(n), n=0..30);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + If[i > n, 0, b[n - i, i] Binomial[i + 3, 3]]]]; a[n_] := b[n, n]; a /@ Range[0, 30] (* Jean-François Alcover, Dec 29 2020, after Alois P. Heinz *)
Formula
a(n) ~ c * 4^n, where c = Product_{k>=2} 1/(1 - (k+1)*(k+2)*(k+3)/(3*2^(2*k+1))) = 4.90673361196637084263021203165784685586076564592828337755053385514766785... - Vaclav Kotesovec, Oct 11 2017, updated May 10 2021
G.f.: Product_{k>=1} 1 / (1 - binomial(k+3,3)*x^k). - Ilya Gutkovskiy, May 09 2021