cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261739 Number of partitions of n where each part i is marked with a word of length i over a quinary alphabet whose letters appear in alphabetical order.

Original entry on oeis.org

1, 5, 40, 235, 1470, 8001, 45865, 241870, 1307055, 6783210, 35510502, 181665635, 934801705, 4741017595, 24118500815, 121693135003, 614889556920, 3091596201560, 15557885702390, 78054925105630, 391798489621630, 1963104427709830, 9838685572501515
Offset: 0

Views

Author

Alois P. Heinz, Aug 30 2015

Keywords

Crossrefs

Column k=5 of A261718.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+`if`(i>n, 0, b(n-i, i)*binomial(i+4, 4))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + If[i > n, 0, b[n - i, i]*Binomial[i + 4, 4]]]];
    a[n_] := b[n, n];
    a /@ Range[0, 30] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)

Formula

a(n) ~ c * 5^n, where c = Product_{k>=2} 1/(1 - (k+1)*(k+2)*(k+3)*(k+4)/(24*5^k)) = 4.1548340497015786311470026968208254860294132084317763408428889184148319... - Vaclav Kotesovec, Oct 11 2017, updated May 10 2021
G.f.: Product_{k>=1} 1 / (1 - binomial(k+4,4)*x^k). - Ilya Gutkovskiy, May 09 2021