A261741 Number of partitions of n where each part i is marked with a word of length i over a septenary alphabet whose letters appear in alphabetical order.
1, 7, 77, 623, 5355, 40299, 317905, 2323483, 17353028, 124991685, 907465307, 6458846989, 46199021001, 326573565143, 2314422214435, 16296707707077, 114891467946017, 806991845455033, 5672334432498356, 39785054428093380, 279156880971492454, 1956352659297436368
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Column k=7 of A261718.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i)*binomial(i+6, 6)))) end: a:= n-> b(n$2): seq(a(n), n=0..30);
Formula
a(n) ~ c * 7^n, where c = Product_{k>=2} 1/(1 - binomial(k+6,6)/7^k) = 3.519268129363442517546929108933080435102442778133731795486515352... - Vaclav Kotesovec, Oct 11 2017, updated May 10 2021
G.f.: Product_{k>=1} 1 / (1 - binomial(k+6,6)*x^k). - Ilya Gutkovskiy, May 10 2021