A261742 Number of partitions of n where each part i is marked with a word of length i over an octonary alphabet whose letters appear in alphabetical order.
1, 8, 100, 920, 8986, 77000, 690652, 5752280, 48916087, 401709720, 3324377084, 26996501992, 220265771738, 1777445952616, 14377907329724, 115613187110872, 930725344479074, 7467529999843432, 59954521406306500, 480433200037686456, 3851244156978563566
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Column k=8 of A261718.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i)*binomial(i+7, 7)))) end: a:= n-> b(n$2): seq(a(n), n=0..30);
Formula
a(n) ~ c * 8^n, where c = Product_{k>=2} 1/(1 - binomial(k+7,7)/8^k) = 3.3565128773700137140303140039343582841894554205106317247... - Vaclav Kotesovec, Oct 11 2017, updated May 10 2021
G.f.: Product_{k>=1} 1 / (1 - binomial(k+7,7)*x^k). - Ilya Gutkovskiy, May 10 2021