A261750 Number of conjugacy classes of two-element generating sets in the symmetric group S_n.
0, 1, 2, 5, 31, 163, 1576
Offset: 1
Crossrefs
Cf. A001691.
Programs
-
GAP
# GAP 4.7 code for calculating the number of distinct 2-generating sets of # symmetric groups. # This code is written for readability, and to minimize package dependencies. # 2015 Attila Egri-Nagy # decides whether the given generating sets generate the symmetric group of # degree n or not IsSn := function(gens,n) return Size(Group(gens))=Factorial(n); end; # returns all degree n permutations (i.e., elements of the symmetric group) AllPermsDegn := function(n) return AsList(SymmetricGroup(IsPermGroup,n)); end; # first 5 entries of A001691 calculated in an inefficient manner # taking all sets of cardinality 2 and check gensets := List([1..5], x->Filtered(Combinations(AllPermsDegn(x),2), y->IsSn(y,x))); Display(List(gensets,Size)); # returns the conjugacy class representative of P under G # calculates the conjugacy class of P and returns the minimum element # P - set of permutations # G - permutation group ConjClRep := function(P, G) return Minimum(Set(AsList(G), x-> Set(P, y->y^x))); end; Display(List([1..5], x->Size(Set(gensets[x], y->ConjClRep(y,SymmetricGroup(IsPermGroup,x))))));
Comments