A261751 Numbers n with property that binary expansion of n^3 begins with the binary expansion of n.
0, 1, 2, 3, 4, 6, 8, 16, 23, 32, 64, 91, 128, 256, 512, 1024, 2048, 4096, 5793, 8192, 16384, 32768, 46341, 65536, 92682, 131072, 185364, 262144, 370728, 524288, 1048576, 2097152, 2965821, 4194304, 5931642, 8388608, 16777216, 33554432, 47453133, 67108864, 94906266
Offset: 1
Examples
23 is a term of this sequence because its cube written in base 2 (10111110000111) starts with its representation in base 2 (10111).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
SetBeginSet[set1_, set2_] := Do[For[i = 1, i <= Length[set1], i++,If[! set1[[i]] == set2[[i]], Return[False]]];Return[True], {1}]; For[k = 0; set = {}, k <= 100000, k++,If[SetBeginSet[IntegerDigits[k, 2], IntegerDigits[k^3, 2]],Print[k]]]
-
PARI
ok(n)={my(t=n^3); t == 0 || t>>(logint(t,2)-logint(n,2))==n} \\ Andrew Howroyd, Dec 23 2019
-
PARI
\\ for larger values viable(b,k)={my(p=b^3, q=(b+2^k-1)^3, s=logint(q,2), t=s-logint(b,2)+k); (p>>s)==0 || ((p>>t)<=(b>>k) && (b>>k)<=(q>>t))} upto(n)={ local(L=List([0])); my(recurse(b,k)=; if(b <= n && viable(b,k), k--; if(k<0, listput(L, b), self()(b,k); self()(b+2^k,k)))); for(k=0, logint(n,2), recurse(2^k, k)); Vec(L); } \\ Andrew Howroyd, Dec 24 2019
Extensions
Terms a(31) and beyond from Andrew Howroyd, Dec 23 2019
Comments