A261764 Triangle read by rows: T(n,k) is the number of nilpotent subpermutations on an n-set, each of nilpotency index less than or equal to k.
1, 0, 1, 0, 1, 3, 0, 1, 7, 13, 0, 1, 25, 49, 73, 0, 1, 81, 261, 381, 501, 0, 1, 331, 1531, 2611, 3331, 4051, 0, 1, 1303, 9073, 19993, 27553, 32593, 37633, 0, 1, 5937, 63393, 165873, 253233, 313713, 354033, 394353, 0, 1, 26785, 465769, 1436473, 2540233, 3326473, 3870793, 4233673, 4596553
Offset: 0
Examples
T(3,2) = 7 because there are 7 nilpotent subpermutations on {1,2,3}, each of nilpotency index less than or equal to 2, namely: empty map, 1-->2, 1-->3, 2-->1, 2-->3, 3-->1, 3-->2. Triangle starts: 1; 0, 1; 0, 1, 3; 0, 1, 7, 13; 0, 1, 25, 49, 73; 0, 1, 81, 261, 381, 501; 0, 1, 331, 1531, 2611, 3331, 4051; ...
References
- A. Laradji and A. Umar, On the number of subpermutations with fixed orbit size, Ars Combinatoria, 109 (2013), 447-460.
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Programs
-
Maple
egf:= k-> exp(add(x^j, j=1..k)): T:= (n, k)-> n!*coeff(series(egf(k), x, n+1), x, n): seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Oct 10 2015 # second Maple program: T:= proc(n, k) option remember; `if`(n=0, 1, add( T(n-j, k)*binomial(n-1, j-1)*j!, j=1..min(n,k))) end: seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Sep 29 2017
-
Mathematica
Table[n!*SeriesCoefficient[Exp[x*(x^k-1)/(x-1)], {x, 0, n}], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 18 2016 *)
Formula
Extensions
More terms from Alois P. Heinz, Oct 10 2015