cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261764 Triangle read by rows: T(n,k) is the number of nilpotent subpermutations on an n-set, each of nilpotency index less than or equal to k.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 7, 13, 0, 1, 25, 49, 73, 0, 1, 81, 261, 381, 501, 0, 1, 331, 1531, 2611, 3331, 4051, 0, 1, 1303, 9073, 19993, 27553, 32593, 37633, 0, 1, 5937, 63393, 165873, 253233, 313713, 354033, 394353, 0, 1, 26785, 465769, 1436473, 2540233, 3326473, 3870793, 4233673, 4596553
Offset: 0

Views

Author

Samira Stitou, Sep 21 2015

Keywords

Examples

			T(3,2) = 7 because there are 7 nilpotent subpermutations on {1,2,3}, each of nilpotency index less than or equal to 2, namely: empty map, 1-->2, 1-->3, 2-->1, 2-->3, 3-->1, 3-->2.
Triangle starts:
1;
0, 1;
0, 1,   3;
0, 1,   7,   13;
0, 1,  25,   49,   73;
0, 1,  81,  261,  381,  501;
0, 1, 331, 1531, 2611, 3331, 4051;
...
		

References

  • A. Laradji and A. Umar, On the number of subpermutations with fixed orbit size, Ars Combinatoria, 109 (2013), 447-460.

Crossrefs

Programs

  • Maple
    egf:= k-> exp(add(x^j, j=1..k)):
    T:= (n, k)-> n!*coeff(series(egf(k), x, n+1), x, n):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Oct 10 2015
    # second Maple program:
    T:= proc(n, k) option remember; `if`(n=0, 1, add(
          T(n-j, k)*binomial(n-1, j-1)*j!, j=1..min(n,k)))
        end:
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Sep 29 2017
  • Mathematica
    Table[n!*SeriesCoefficient[Exp[x*(x^k-1)/(x-1)], {x, 0, n}], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 18 2016 *)

Formula

T(n, k) = T(n-1, k) + 2(n-1)T(n-2, k) + ... + k(n-1) ... (n-k+1)T(n-k, k), with T(n, 1) = 1 and T(n, n+r) = T(n, n) for every nonnegative integer r.
T(n,n) = A000262(n).
E.g.f. of column k: exp(x + x^2 + ... + x^k).
T(n,k) = Sum_{i=0..k} A157400(n,i).

Extensions

More terms from Alois P. Heinz, Oct 10 2015