A261765 Triangle read by rows: T(n,k) is the number of subpermutations of an n-set, whose orbits are each of size at most k with at least one orbit of size exactly k, and without fixed points. Equivalently, T(n,k) is the number of partial derangements of an n-set each of whose orbits is of size at most k with at least one orbit of size exactly k, and without fixed points.
1, 1, 0, 1, 0, 3, 1, 0, 9, 8, 1, 0, 45, 32, 30, 1, 0, 165, 320, 150, 144, 1, 0, 855, 2240, 1800, 864, 840, 1, 0, 3843, 17360, 18900, 12096, 5880, 5760, 1, 0, 21819, 146048, 195300, 145152, 94080, 46080, 45360, 1, 0, 114075, 1256192, 2120580, 1959552, 1270080, 829440, 408240, 403200
Offset: 0
Examples
T(n,1) = 0 because there is no (partial) derangement with an orbit of size 1. T(3,2) = 9 because there are 9 subpermutations on {1,2,3}, whose orbits are each of size at most 2 with at least one orbit of size exactly 2, and without fixed points, namely: (1 2 --> 2 1), (1 3 --> 3 1), (2 3 --> 3 2), (1-->2), (1-->3), (2-->1), (2-->3), (3-->1), (3-->2). Triangle starts: 1; 1, 0; 1, 0, 3; 1, 0, 9, 8; 1, 0, 45, 32, 30; 1, 0, 165, 320, 150, 144; 1, 0, 855, 2240, 1800, 864, 840; ...
References
- A. Laradji and A. Umar, On the number of subpermutations with fixed orbit size, Ars Combinatoria, 109 (2013), 447-460.
Extensions
More terms from Alois P. Heinz, Nov 04 2015
Comments