cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261765 Triangle read by rows: T(n,k) is the number of subpermutations of an n-set, whose orbits are each of size at most k with at least one orbit of size exactly k, and without fixed points. Equivalently, T(n,k) is the number of partial derangements of an n-set each of whose orbits is of size at most k with at least one orbit of size exactly k, and without fixed points.

Original entry on oeis.org

1, 1, 0, 1, 0, 3, 1, 0, 9, 8, 1, 0, 45, 32, 30, 1, 0, 165, 320, 150, 144, 1, 0, 855, 2240, 1800, 864, 840, 1, 0, 3843, 17360, 18900, 12096, 5880, 5760, 1, 0, 21819, 146048, 195300, 145152, 94080, 46080, 45360, 1, 0, 114075, 1256192, 2120580, 1959552, 1270080, 829440, 408240, 403200
Offset: 0

Views

Author

Samira Stitou, Sep 21 2015

Keywords

Comments

T(n,n) is A261766. Sum of rows is A144085.

Examples

			T(n,1) = 0 because there is no (partial) derangement with an orbit of size 1.
T(3,2) = 9 because there are 9 subpermutations on {1,2,3}, whose orbits are each of size at most 2 with at least one orbit of size exactly 2, and without fixed points, namely: (1 2 --> 2 1), (1 3 --> 3 1), (2 3 --> 3 2), (1-->2), (1-->3), (2-->1), (2-->3), (3-->1), (3-->2).
Triangle starts:
1;
1, 0;
1, 0, 3;
1, 0, 9, 8;
1, 0, 45, 32, 30;
1, 0, 165, 320, 150, 144;
1, 0, 855, 2240, 1800, 864, 840;
...
		

References

  • A. Laradji and A. Umar, On the number of subpermutations with fixed orbit size, Ars Combinatoria, 109 (2013), 447-460.

Crossrefs

Formula

T(n,k) = A261762(n,k) - A261762(n,k-1).

Extensions

More terms from Alois P. Heinz, Nov 04 2015