cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261772 Expansion of Product_{k>=1} (1 + x^k) / (1 + x^(10*k)).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 14, 16, 20, 24, 28, 33, 40, 46, 54, 64, 74, 86, 100, 115, 133, 154, 176, 202, 231, 263, 300, 342, 388, 440, 499, 563, 636, 718, 808, 909, 1022, 1146, 1284, 1439, 1608, 1797, 2006, 2236, 2490, 2772, 3081, 3422, 3800, 4212
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 31 2015

Keywords

Comments

a(n) is the number of partitions of n into distinct parts where no part is a multiple of 10.
In general, if m > 1 and g.f. = Product_{k>=1} (1 + x^k)/(1 + x^(m*k)), then a(n) ~ exp(Pi*sqrt((m-1)*n/(3*m))) * (m-1)^(1/4) / (2^(3/2) * 3^(1/4) * m^(1/4) * n^(3/4)) * (1 - (3*sqrt(3*m)/(8*Pi*sqrt(m-1)) + (m-1)^(3/2)*Pi/(48*sqrt(3*m))) / sqrt(n)). - Vaclav Kotesovec, Aug 31 2015, extended Jan 21 2017

Crossrefs

Cf. A145707.
Cf. A000700 (m=2), A003105 (m=3), A070048 (m=4), A096938 (m=5), A261770 (m=6), A097793 (m=7), A261771 (m=8), A112193 (m=9).
Column k=10 of A290307.

Programs

  • Maple
    b:= proc(n, i) option remember;  local r;
          `if`(2*n>i*(i+1)-(j-> 10*j*(j+1))(iquo(i, 10, 'r')), 0,
          `if`(n=0, 1, b(n, i-1)+`if`(i>n or r=0, 0, b(n-i, i-1))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..80);  # Alois P. Heinz, Aug 31 2015
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + x^k) / (1 + x^(10*k)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(3*n/10)) * 3^(1/4) / (2^(7/4) * 5^(1/4) * n^(3/4)) * (1 - (sqrt(15)/(4*Pi*sqrt(2)) + 3*Pi*sqrt(3)/(16*sqrt(10))) / sqrt(n)). - Vaclav Kotesovec, Aug 31 2015, extended Jan 21 2017
G.f.: Product_{k>=1} (1 - x^(20*k-10))/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 07 2017