A261780 Number A(n,k) of compositions of n where each part i is marked with a word of length i over a k-ary alphabet whose letters appear in alphabetical order; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 7, 4, 0, 1, 4, 15, 24, 8, 0, 1, 5, 26, 73, 82, 16, 0, 1, 6, 40, 164, 354, 280, 32, 0, 1, 7, 57, 310, 1031, 1716, 956, 64, 0, 1, 8, 77, 524, 2395, 6480, 8318, 3264, 128, 0, 1, 9, 100, 819, 4803, 18501, 40728, 40320, 11144, 256, 0
Offset: 0
Examples
A(3,2) = 24: 3aaa, 3aab, 3abb, 3bbb, 2aa1a, 2aa1b, 2ab1a, 2ab1b, 2bb1a, 2bb1b, 1a2aa, 1a2ab, 1a2bb, 1b2aa, 1b2ab, 1b2bb, 1a1a1a, 1a1a1b, 1a1b1a, 1a1b1b, 1b1a1a, 1b1a1b, 1b1b1a, 1b1b1b. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, 5, 6, ... 0, 2, 7, 15, 26, 40, 57, ... 0, 4, 24, 73, 164, 310, 524, ... 0, 8, 82, 354, 1031, 2395, 4803, ... 0, 16, 280, 1716, 6480, 18501, 44022, ... 0, 32, 956, 8318, 40728, 142920, 403495, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
- E. Grazzini, E. Munarini, M. Poneti, S. Rinaldi, m-compositions and m-partitions: exhaustive generation and Gray code, Pure Math. Appl. 17 (2006), 111-121.
- G. Louchard, Matrix Compositions: a Probabilistic analysis, Proc. GASCOM'08, Pure Mathematics and Applications, 19, 2-3, 127-146, 2008.
- E. Munarini, M. Poneti, S. Rinaldi, Matrix compositions, Journal of Integer Sequences, Vol. 12 (2009), Article 09.4.8
Crossrefs
Programs
-
Maple
A:= proc(n, k) option remember; `if`(n=0, 1, add(A(n-j, k)*binomial(j+k-1, k-1), j=1..n)) end: seq(seq(A(n, d-n), n=0..d), d=0..12);
-
Mathematica
a[n_, k_] := SeriesCoefficient[(1-x)^k/(2*(1-x)^k-1), {x, 0, n}]; Table[ a[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Feb 07 2017 *)
Formula
G.f. of column k: (1-x)^k/(2*(1-x)^k-1).
A(n,k) = Sum_{i=0..k} C(k,i) * A261781(n,k-i).
A(n,k) = Sum_{j>=0} (1/2)^(j+1) * binomial(n-1+k*j,n). - Seiichi Manyama, Aug 06 2024
Comments