cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261782 Powers C^z = A^x + B^y with positive integers A,B,C,x,y,z such that x,y,z > 2.

Original entry on oeis.org

16, 32, 64, 128, 243, 256, 512, 1024, 2048, 2744, 4096, 6561, 8192, 16384, 32768, 65536, 131072, 177147, 185193, 262144, 474552, 524288, 614656, 810000, 941192, 1048576, 1124864, 1419857, 1500625, 2097152, 3241792, 4194304
Offset: 1

Views

Author

Anatoly E. Voevudko, Aug 31 2015

Keywords

Comments

Beal's conjecture states that A, B, and C have a common prime factor.
Theorem. If A, B are odd and x, y are even, Beal's conjecture has no counterexample. Proof: Let D be odd, D > 1 and let w be even, w > 2. Then D^w == 9 (mod 24) while D == 0 (mod 3); otherwise, D^w == 1 (mod 24) (trivial). Any even C^z == {0; 8; 16} (mod 24): if C == 0 (mod 3), C^z == 0 (mod 24); if C == 1 (mod 3), C^z == 16 (mod 24); if C == 2 (mod 3), C^z == 8 (mod 24), while z is odd, and C^z == 16 (mod 24), while z is even (trivial). But C^z == (x'+y') (mod 24) where A^x = x' (mod 24), B^y = y' (mod 24); since (x'+y') = {2; 10; 18}, C^z == {2; 10; 18} (mod 24), which cannot be a counterexample to Beal's conjecture. - Sergey Pavlov, May 08 2021

Examples

			2^3 + 2^3 = 2^4 = 16, so 16 is in the sequence.
		

Crossrefs

Subsequence of A076467.
Cf. A245713.

Programs

  • PARI
    is(n)=if(ispower(n)<3, return(0)); for(x=3,logint((n+1)\2,2), for(A=2,sqrtnint(n,x), if(ispower(n-A^x)>2, return(1)))); 0 \\ Charles R Greathouse IV, Sep 03 2015
    
  • PARI
    list(lim)=my(v=List(),u=v,t); for(z=3,logint(lim\=1,2), for(C=2,sqrtnint(lim,z), listput(v,C^z))); v=Set(v); for(i=1,#v, for(j=i,#v, t=v[i]+v[j]; if(t>lim, break); if(setsearch(v,t), listput(u,t)))); Set(u) \\ Charles R Greathouse IV, Sep 03 2015