cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261783 Number of compositions of n where each part i is marked with a word of length i over an n-ary alphabet whose letters appear in alphabetical order.

Original entry on oeis.org

1, 1, 7, 73, 1031, 18501, 403495, 10366833, 306717703, 10271072557, 384058268507, 15861842372465, 717135437119271, 35228475333207937, 1868440035684996207, 106412817671933423073, 6477200889282232394759, 419626639092214594301373, 28829330550533269570699411
Offset: 0

Views

Author

Alois P. Heinz, Aug 31 2015

Keywords

Crossrefs

Main diagonal of A261780.
Cf. A209668.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1,
          add(A(n-j, k)*binomial(j+k-1, k-1), j=1..n))
        end:
    a:= n-> A(n$2):
    seq(a(n), n=0..20);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[A[n - j, k]*Binomial[j + k - 1, k - 1], {j, 1, n}]]; a[n_] := A[n, n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 24 2017, translated from Maple *)

Formula

a(n) = A261780(n,n).
a(n) = [x^n] (1-x)^n/(2*(1-x)^n-1).
a(n) ~ n^n / (sqrt(2) * (log(2))^(n+1)). - Vaclav Kotesovec, Sep 21 2019
a(n) = Sum_{k>=1} (1/2)^k * binomial(k*n-1,n). - Seiichi Manyama, Aug 06 2024