A261799 Number of 7-compositions of n: matrices with 7 rows of nonnegative integers with positive column sums and total element sum n.
1, 7, 77, 819, 8687, 92141, 977347, 10366833, 109962202, 1166381804, 12371946734, 131230670312, 1391978902090, 14764881252772, 156612803600094, 1661210126351328, 17620647995924820, 186904251828901124, 1982515022137687464, 21028766197355391048
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..975
- Index entries for linear recurrences with constant coefficients, signature (14,-42,70,-70,42,-14,2).
Crossrefs
Column k=7 of A261780.
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*binomial(j+6, 6), j=1..n)) end: seq(a(n), n=0..20);
Formula
G.f.: (1-x)^7/(2*(1-x)^7-1).
a(n) = A261780(n,7).
a(n) = Sum_{k>=0} (1/2)^(k+1) * binomial(n-1+7*k,n). - Seiichi Manyama, Aug 06 2024
Comments