A261801 Number of 9-compositions of n: matrices with 9 rows of nonnegative integers with positive column sums and total element sum n.
1, 9, 126, 1704, 22986, 310086, 4183260, 56435004, 761346207, 10271072557, 138563678736, 1869317246556, 25218347263608, 340212470558832, 4589695110222504, 61918074814238448, 835316485437693186, 11268981358631127288, 152026139882340589466
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..880
- Index entries for linear recurrences with constant coefficients, signature (18, -72, 168, -252, 252, -168, 72, -18, 2).
Crossrefs
Column k=9 of A261780.
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*binomial(j+8, 8), j=1..n)) end: seq(a(n), n=0..20);
Formula
G.f.: (1-x)^9/(2*(1-x)^9-1).
a(n) = A261780(n,9).
a(n) = Sum_{k>=0} (1/2)^(k+1) * binomial(n-1+9*k,n). - Seiichi Manyama, Aug 06 2024
Comments