A261802 Number of 10-compositions of n: matrices with 10 rows of nonnegative integers with positive column sums and total element sum n.
1, 10, 155, 2320, 34640, 517252, 7723970, 115339960, 1722340115, 25719233330, 384058268507, 5735036957760, 85639736481880, 1278834734405320, 19096488909285540, 285162639746429024, 4258255614078447290, 63587365059302801520, 949532710487622388080
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..850
- Index entries for linear recurrences with constant coefficients, signature (20, -90, 240, -420, 504, -420, 240, -90, 20, -2).
Crossrefs
Column k=10 of A261780.
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*binomial(j+9, 9), j=1..n)) end: seq(a(n), n=0..20);
Formula
G.f.: (1-x)^10/(2*(1-x)^10-1).
a(n) = A261780(n,10).
a(n) = Sum_{k>=0} (1/2)^(k+1) * binomial(n-1+10*k,n). - Seiichi Manyama, Aug 06 2024
Comments