cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A261930 Row sums of triangle A261897.

Original entry on oeis.org

1, 2, 3, 6, 12, 22, 44, 88, 176, 352, 697, 1394, 2788, 5576, 11152, 22304, 44608, 89172, 178344, 356688, 713376, 1426752, 2853504, 5707008, 11414016, 22828032, 45655636, 91311272, 182622544, 365245088, 730490176, 1460980352, 2921960704, 5843921408
Offset: 0

Views

Author

Reinhard Zumkeller, Sep 06 2015

Keywords

Crossrefs

Cf. A261897.

Programs

  • Haskell
    a261930 = sum . a261897_row

A242105 Number of sequences (x(k))_{k=1..n}, of n strictly increasing terms of nonnegative integers {x(1)

Original entry on oeis.org

1, 2, 7, 44, 428, 5802, 102322, 2239844, 58849332, 1810039960, 63930543419, 2553881719348, 113979459829296, 5625823639358928, 304505544257483550, 17944306197698666740, 1144180970802458374244, 78517953136289477587608, 5771772521253777092098050
Offset: 0

Views

Author

Charles Helou, Aug 14 2014

Keywords

Comments

Also the first occurring nonzero terms in rows of triangle A261897, without repetitions. - Reinhard Zumkeller, Sep 06 2015

Examples

			For n=2 the a(2) = 7 solutions are (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4).
		

Crossrefs

Cf. A261897.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n+1, add((-1)^(k-1)*
           binomial((n-k+1)^2+k-1, k) * a(n-k), k=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 15 2014
  • Mathematica
    a[0] = 1; a[1] = 2; a[n_] := a[n] = Sum[(-1)^(k-1)*Binomial[(n-k+1)^2+k-1, k]*a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 26 2017 *)

Formula

a(n) = Sum_{k=1..n} (-1)^{k-1}* C((n-k+1)^2+k-1,k) * a(n-k), for n>1.
a(n) = C(n^2,n-1) + C(n^2-1,n-1) - Sum_{k=2..n-1} C(n^2-k^2,n-k+1) *a(k-1), for n>1.
Conjecture: lim n->infinity a(n)^(1/n)/n = 2. - Vaclav Kotesovec, Feb 26 2017
Showing 1-2 of 2 results.