cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A122921 Express n as the sum of four squares, x^2+y^2+z^2+w^2, x>=y>=z>=w>=0, minimizing the value of x. a(n) is that x.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 4, 4, 3, 4, 4, 4, 4, 3, 4, 4, 5, 4, 4, 4, 4, 5, 4, 5, 5, 4, 4, 4, 5, 4, 6, 5, 5, 6, 4, 5, 5, 5, 5, 6, 5, 4, 6, 5, 5, 5, 6, 5, 6, 6, 5, 6, 5, 5, 6, 6, 5, 6, 6, 5, 7, 5, 6, 6, 6, 6, 6, 6, 5, 6, 6, 7, 6, 8, 6, 6, 7, 5, 6, 6, 7, 6
Offset: 0

Views

Author

Keywords

Examples

			10 = 2^2 + 2^2 + 1^2 + 1^2, so a(10) = 2. The only representation for 11 is 3^2 + 1^2 + 1^2 + 0^2, so a(11) = 3.
		

Crossrefs

Analogs for 3 squares: A261904 and A261915.

A178786 Express n as the sum of four squares, x^2+y^2+z^2+w^2, with x>=y>=z>=w>=0, maximizing the value of x. Then a(n) is that x.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 3, 4, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 8, 8, 7, 8, 9, 9, 9, 9, 9, 9, 9, 8, 9, 9, 9, 9, 9, 9, 9, 8, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 9, 10, 10, 10, 10, 10, 10, 10, 9, 10
Offset: 0

Views

Author

Sébastien Dumortier, Jun 24 2011

Keywords

Comments

Lagrange's theorem tells us that each positive integer can be written as a sum of four squares.

Crossrefs

Analogs for 3 squares: A261904 and A261915.

Programs

  • Python
    from math import *
    for nbre in range(0, 500): # or more than 500 !
        maxc4=0
        for c1 in range(0, int(sqrt(nbre/4))+1):
            for c2 in range(c1, int(sqrt(nbre/3))+1):
                for c3 in range(c2, int(sqrt(nbre/2))+1):
                    s3=c3**2+c2**2+c1**2
                    if s3<=nbre:
                        c4=sqrt(nbre-s3)
                        if int(c4)==c4 and c4>=c3:
                            if c4>maxc4:
                                maxc4=int(c4)
        print(maxc4, end=', ')

A261904 Largest x such that n can be written as n = x^2 + y^2 + z^2 with x >= y >= z >= 0, or -1 if no such x exists.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 2, -1, 2, 3, 3, 3, 2, 3, 3, -1, 4, 4, 4, 3, 4, 4, 3, -1, 4, 5, 5, 5, -1, 5, 5, -1, 4, 5, 5, 5, 6, 6, 6, -1, 6, 6, 5, 5, 6, 6, 6, -1, 4, 7, 7, 7, 6, 7, 7, -1, 6, 7, 7, 7, -1, 6, 7, -1, 8, 8, 8, 7, 8, 8, 6, -1, 8, 8, 8, 7, 6, 8, 7, -1, 8, 9, 9
Offset: 0

Views

Author

N. J. A. Sloane, Sep 08 2015

Keywords

Comments

a(n) = -1 iff n is in A004215, a(n) >= 0 iff n is in A000378.
Somehow maximizing x seems like the right thing to do (since it is natural to try a greedy algorithm first). If we minimize x we get A261915.

Examples

			Tabls showing initial values of n,x,y,z:
0 0 0 0
1 1 0 0
2 1 1 0
3 1 1 1
4 2 0 0
5 2 1 0
6 2 1 1
7 -1 -1 -1
8 2 2 0
9 3 0 0
10 3 1 0
11 3 1 1
12 2 2 2
13 3 2 0
14 3 2 1
15 -1 -1 -1
16 4 0 0
17 4 1 0
18 4 1 1
19 3 3 1
20 4 2 0
...
		

Crossrefs

Analogs for 4 squares: A178786 and A122921.

Extensions

More terms from David Consiglio, Jr., Sep 08 2015
Showing 1-3 of 3 results.