A261934 The first of ten consecutive positive integers the sum of the squares of which is equal to the sum of the squares of two consecutive positive integers.
7, 17, 26, 52, 205, 383, 544, 1010, 3755, 6949, 9838, 18200, 67457, 124771, 176612, 326662, 1210543, 2239001, 3169250, 5861788, 21722389, 40177319, 56869960, 105185594, 389792531, 720952813, 1020490102, 1887478976, 6994543241, 12936973387, 18311951948
Offset: 1
Examples
7 is in the sequence because 7^2 + 8^2 + ... + 16^2 = 26^2 + 27^2.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,18,-18,0,0,-1,1).
Programs
-
Mathematica
LinearRecurrence[{1,0,0,18,-18,0,0,-1,1},{7,17,26,52,205,383,544,1010,3755},40] (* Harvey P. Dale, Mar 29 2018 *)
-
PARI
Vec(x*(2*x^8+2*x^7+x^6+2*x^5-27*x^4-26*x^3-9*x^2-10*x-7)/((x-1)*(x^4-4*x^2-1)*(x^4+4*x^2-1)) + O(x^40))
Formula
G.f.: x*(2*x^8+2*x^7+x^6+2*x^5-27*x^4-26*x^3-9*x^2-10*x-7) / ((x-1)*(x^4-4*x^2-1)*(x^4+4*x^2-1)).
Comments