A261932 The first of two consecutive positive integers the sum of the squares of which is equal to the sum of the squares of ten consecutive positive integers.
26, 48, 68, 126, 468, 866, 1226, 2268, 8406, 15548, 22008, 40706, 150848, 279006, 394926, 730448, 2706866, 5006568, 7086668, 13107366, 48572748, 89839226, 127165106, 235202148, 871602606, 1612099508, 2281885248, 4220531306, 15640274168, 28927951926
Offset: 1
Examples
26 is in the sequence because 26^2 + 27^2 = 7^2 + 8^2 + ... + 16^2.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,18,-18,0,0,-1,1).
Programs
-
Mathematica
CoefficientList[Series[2 (4 x^8 - x^7 + x^5 - 63 x^4 + 29 x^3 + 10 x^2 + 11 x + 13)/((1 - x) (x^4 - 4 x^2 - 1) (x^4 + 4 x^2 - 1)), {x, 0, 45}], x] (* Vincenzo Librandi, Sep 07 2015 *)
-
PARI
Vec(-2*x*(4*x^8-x^7+x^5-63*x^4+29*x^3+10*x^2+11*x+13)/((x-1)*(x^4-4*x^2-1)*(x^4+4*x^2-1)) + O(x^40))
Formula
G.f.: -2*x*(4*x^8-x^7+x^5-63*x^4+29*x^3+10*x^2+11*x+13) / ((x-1)*(x^4-4*x^2-1)*(x^4+4*x^2-1)).
a(n) = a(n-1) + 18*a(n-4) - 18*a(n-5) - a(n-8) + a(n-9) for n>8. - Vincenzo Librandi, Sep 07 2015
Comments