A261960 Number A(n,k) of compositions of n such that no part equals any of its k immediate predecessors; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 3, 8, 1, 1, 1, 3, 4, 16, 1, 1, 1, 3, 3, 7, 32, 1, 1, 1, 3, 3, 5, 14, 64, 1, 1, 1, 3, 3, 5, 11, 23, 128, 1, 1, 1, 3, 3, 5, 11, 15, 39, 256, 1, 1, 1, 3, 3, 5, 11, 13, 23, 71, 512, 1, 1, 1, 3, 3, 5, 11, 13, 19, 37, 124, 1024
Offset: 0
Examples
Square array A(n,k) begins: : 1, 1, 1, 1, 1, 1, 1, ... : 1, 1, 1, 1, 1, 1, 1, ... : 2, 1, 1, 1, 1, 1, 1, ... : 4, 3, 3, 3, 3, 3, 3, ... : 8, 4, 3, 3, 3, 3, 3, ... : 16, 7, 5, 5, 5, 5, 5, ... : 32, 14, 11, 11, 11, 11, 11, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..50, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, l) option remember; `if`(n=0, 1, add(`if`(j in l, 0, b(n-j, `if`(l=[], [], [subsop(1=NULL, l)[], j]))), j=1..n)) end: A:= (n, k)-> b(n, [0$min(n, k)]): seq(seq(A(n, d-n), n=0..d), d=0..12);
-
Mathematica
b[n_, l_] := b[n, l] = If[n==0, 1, Sum[If[MemberQ[l, j], 0, b[n-j, If[l == {}, {}, Append[Rest[l], j]]]], {j, 1, n}]]; A[n_, k_] := b[n, Array[0&, Min[n, k]]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 08 2017, translated from Maple *)