cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261960 Number A(n,k) of compositions of n such that no part equals any of its k immediate predecessors; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 3, 8, 1, 1, 1, 3, 4, 16, 1, 1, 1, 3, 3, 7, 32, 1, 1, 1, 3, 3, 5, 14, 64, 1, 1, 1, 3, 3, 5, 11, 23, 128, 1, 1, 1, 3, 3, 5, 11, 15, 39, 256, 1, 1, 1, 3, 3, 5, 11, 13, 23, 71, 512, 1, 1, 1, 3, 3, 5, 11, 13, 19, 37, 124, 1024
Offset: 0

Views

Author

Alois P. Heinz, Sep 06 2015

Keywords

Examples

			Square array A(n,k) begins:
:  1,  1,  1,  1,  1,  1,  1, ...
:  1,  1,  1,  1,  1,  1,  1, ...
:  2,  1,  1,  1,  1,  1,  1, ...
:  4,  3,  3,  3,  3,  3,  3, ...
:  8,  4,  3,  3,  3,  3,  3, ...
: 16,  7,  5,  5,  5,  5,  5, ...
: 32, 14, 11, 11, 11, 11, 11, ...
		

Crossrefs

Columns k=0-2 give: A011782, A003242, A261962.
Main diagonal gives A032020.

Programs

  • Maple
    b:= proc(n, l) option remember;
          `if`(n=0, 1, add(`if`(j in l, 0, b(n-j,
          `if`(l=[], [], [subsop(1=NULL, l)[], j]))), j=1..n))
        end:
    A:= (n, k)-> b(n, [0$min(n, k)]):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[n_, l_] := b[n, l] = If[n==0, 1, Sum[If[MemberQ[l, j], 0, b[n-j, If[l == {}, {}, Append[Rest[l], j]]]], {j, 1, n}]]; A[n_, k_] := b[n, Array[0&, Min[n, k]]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 08 2017, translated from Maple *)