A261981 Number T(n,k) of compositions of n such that k is the minimal distance between two identical parts; triangle T(n,k), n>=2, 1<=k<=floor((sqrt(8*n-7)-1)/2), read by rows.
1, 1, 4, 1, 9, 2, 18, 3, 41, 8, 2, 89, 16, 4, 185, 34, 10, 388, 57, 10, 810, 113, 30, 6, 1670, 213, 52, 12, 3435, 396, 104, 28, 7040, 733, 176, 50, 14360, 1333, 278, 62, 29226, 2419, 512, 152, 24, 59347, 4400, 878, 246, 48, 120229, 7934, 1492, 458, 108
Offset: 2
Examples
T(5,1) = 9: 311, 113, 221, 122, 2111, 1211, 1121, 1112, 11111. T(5,2) = 2: 131, 212. T(7,2) = 8: 151, 313, 232, 3121, 1213, 2131, 1312, 12121. T(7,3) = 2: 1231, 1321. Triangle T(n,k) begins: n\k: 1 2 3 4 5 ---+--------------------------- 02 : 1; 03 : 1; 04 : 4, 1; 05 : 9, 2; 06 : 18, 3; 07 : 41, 8, 2; 08 : 89, 16, 4; 09 : 185, 34, 10; 10 : 388, 57, 10; 11 : 810, 113, 30, 6; 12 : 1670, 213, 52, 12; 13 : 3435, 396, 104, 28; 14 : 7040, 733, 176, 50; 15 : 14360, 1333, 278, 62; 16 : 29226, 2419, 512, 152, 24;
Links
- Alois P. Heinz, Rows n = 2..55, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, l) option remember; `if`(n=0, 1, add(`if`(j in l, 0, b(n-j, `if`(l=[], [], [subsop(1=NULL, l)[], j]))), j=1..n)) end: T:= (n, k)-> b(n, [0$(k-1)])-b(n, [0$k]): seq(seq(T(n, k), k=1..floor((sqrt(8*n-7)-1)/2)), n=2..20);
-
Mathematica
b[n_, l_] := b[n, l] = If[n == 0, 1, Sum[If[MemberQ[l, j], 0, b[n-j, If[l == {}, {}, Append[Rest[l], j]]]], {j, 1, n}]]; A[n_, k_] := b[n, Array[0&, Min[n, k]]]; T[n_, k_] := A[n, k-1] - A[n, k]; Table[T[n, k], {n, 2, 20}, {k, 1, Floor[(Sqrt[8*n-7]-1)/2]}] // Flatten (* Jean-François Alcover, Apr 13 2017, after Alois P. Heinz *)