cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261981 Number T(n,k) of compositions of n such that k is the minimal distance between two identical parts; triangle T(n,k), n>=2, 1<=k<=floor((sqrt(8*n-7)-1)/2), read by rows.

Original entry on oeis.org

1, 1, 4, 1, 9, 2, 18, 3, 41, 8, 2, 89, 16, 4, 185, 34, 10, 388, 57, 10, 810, 113, 30, 6, 1670, 213, 52, 12, 3435, 396, 104, 28, 7040, 733, 176, 50, 14360, 1333, 278, 62, 29226, 2419, 512, 152, 24, 59347, 4400, 878, 246, 48, 120229, 7934, 1492, 458, 108
Offset: 2

Views

Author

Alois P. Heinz, Sep 07 2015

Keywords

Examples

			T(5,1) = 9: 311, 113, 221, 122, 2111, 1211, 1121, 1112, 11111.
T(5,2) = 2: 131, 212.
T(7,2) = 8: 151, 313, 232, 3121, 1213, 2131, 1312, 12121.
T(7,3) = 2: 1231, 1321.
Triangle T(n,k) begins:
n\k:     1     2    3    4   5
---+---------------------------
02 :     1;
03 :     1;
04 :     4,    1;
05 :     9,    2;
06 :    18,    3;
07 :    41,    8,   2;
08 :    89,   16,   4;
09 :   185,   34,  10;
10 :   388,   57,  10;
11 :   810,  113,  30,   6;
12 :  1670,  213,  52,  12;
13 :  3435,  396, 104,  28;
14 :  7040,  733, 176,  50;
15 : 14360, 1333, 278,  62;
16 : 29226, 2419, 512, 152, 24;
		

Crossrefs

Columns k=1-2 give: A261983, A261984.
Row sums give A261982.

Programs

  • Maple
    b:= proc(n, l) option remember;
          `if`(n=0, 1, add(`if`(j in l, 0, b(n-j,
          `if`(l=[], [], [subsop(1=NULL, l)[], j]))), j=1..n))
        end:
    T:= (n, k)-> b(n, [0$(k-1)])-b(n, [0$k]):
    seq(seq(T(n, k), k=1..floor((sqrt(8*n-7)-1)/2)), n=2..20);
  • Mathematica
    b[n_, l_] := b[n, l] = If[n == 0, 1, Sum[If[MemberQ[l, j], 0, b[n-j, If[l == {}, {}, Append[Rest[l], j]]]], {j, 1, n}]];
    A[n_, k_] := b[n, Array[0&, Min[n, k]]];
    T[n_, k_] := A[n, k-1] - A[n, k];
    Table[T[n, k], {n, 2, 20}, {k, 1, Floor[(Sqrt[8*n-7]-1)/2]}] // Flatten (* Jean-François Alcover, Apr 13 2017, after Alois P. Heinz *)

Formula

T(n,k) = A261960(n,k-1) - A261960(n,k).
T((n+1)*(n+2)/2+1,n+1) = A000142(n) for n>=0.