A261982 Number of compositions of n with some part repeated.
0, 0, 1, 1, 5, 11, 21, 51, 109, 229, 455, 959, 1947, 3963, 7999, 16033, 32333, 64919, 130221, 260967, 522733, 1045825, 2093855, 4189547, 8382315, 16768455, 33543127, 67093261, 134193413, 268404995, 536829045, 1073686083, 2147408773, 4294869253, 8589803783
Offset: 0
Keywords
Examples
a(2) = 1: 11. a(3) = 1: 111. a(4) = 5: 22, 211, 121, 112, 1111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3322
- Wikipedia, Permutation pattern
- Gus Wiseman, Sequences counting and ranking compositions by the patterns they match or avoid.
Crossrefs
Programs
-
Maple
b:= proc(n, k) option remember; `if`(k<0 or n<0, 0, `if`(k=0, `if`(n=0, 1, 0), b(n-k, k) +k*b(n-k, k-1))) end: a:= n-> ceil(2^(n-1))-add(b(n, k), k=0..floor((sqrt(8*n+1)-1)/2)): seq(a(n), n=0..40);
-
Mathematica
b[n_, k_] := b[n, k] = If[k<0 || n<0, 0, If[k==0, If[n==0, 1, 0], b[n-k, k] + k*b[n-k, k-1]]]; a[n_] := Ceiling[2^(n-1)]-Sum[b[n, k], {k, 0, Floor[ (Sqrt[8n+1]-1)/2]}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 08 2017, translated from Maple *) Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],Length[#]>Length[Split[#]]&]],{n,0,10}] (* Gus Wiseman, Jun 24 2020 *)
Formula
G.f.: (1 - x) / (1 - 2*x) - Sum_{k>=0} k! * x^(k*(k + 1)/2) / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Jan 30 2020
Comments