A261982
Number of compositions of n with some part repeated.
Original entry on oeis.org
0, 0, 1, 1, 5, 11, 21, 51, 109, 229, 455, 959, 1947, 3963, 7999, 16033, 32333, 64919, 130221, 260967, 522733, 1045825, 2093855, 4189547, 8382315, 16768455, 33543127, 67093261, 134193413, 268404995, 536829045, 1073686083, 2147408773, 4294869253, 8589803783
Offset: 0
a(2) = 1: 11.
a(3) = 1: 111.
a(4) = 5: 22, 211, 121, 112, 1111.
The version for patterns is
A019472.
The (1,1)-avoiding version is
A032020.
(1,1,1)-matching compositions are counted by
A335455.
Patterns matched by compositions are counted by
A335456.
(1,1)-matching compositions are ranked by
A335488.
-
b:= proc(n, k) option remember; `if`(k<0 or n<0, 0,
`if`(k=0, `if`(n=0, 1, 0), b(n-k, k) +k*b(n-k, k-1)))
end:
a:= n-> ceil(2^(n-1))-add(b(n, k), k=0..floor((sqrt(8*n+1)-1)/2)):
seq(a(n), n=0..40);
-
b[n_, k_] := b[n, k] = If[k<0 || n<0, 0, If[k==0, If[n==0, 1, 0], b[n-k, k] + k*b[n-k, k-1]]]; a[n_] := Ceiling[2^(n-1)]-Sum[b[n, k], {k, 0, Floor[ (Sqrt[8n+1]-1)/2]}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 08 2017, translated from Maple *)
Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],Length[#]>Length[Split[#]]&]],{n,0,10}] (* Gus Wiseman, Jun 24 2020 *)
A261981
Number T(n,k) of compositions of n such that k is the minimal distance between two identical parts; triangle T(n,k), n>=2, 1<=k<=floor((sqrt(8*n-7)-1)/2), read by rows.
Original entry on oeis.org
1, 1, 4, 1, 9, 2, 18, 3, 41, 8, 2, 89, 16, 4, 185, 34, 10, 388, 57, 10, 810, 113, 30, 6, 1670, 213, 52, 12, 3435, 396, 104, 28, 7040, 733, 176, 50, 14360, 1333, 278, 62, 29226, 2419, 512, 152, 24, 59347, 4400, 878, 246, 48, 120229, 7934, 1492, 458, 108
Offset: 2
T(5,1) = 9: 311, 113, 221, 122, 2111, 1211, 1121, 1112, 11111.
T(5,2) = 2: 131, 212.
T(7,2) = 8: 151, 313, 232, 3121, 1213, 2131, 1312, 12121.
T(7,3) = 2: 1231, 1321.
Triangle T(n,k) begins:
n\k: 1 2 3 4 5
---+---------------------------
02 : 1;
03 : 1;
04 : 4, 1;
05 : 9, 2;
06 : 18, 3;
07 : 41, 8, 2;
08 : 89, 16, 4;
09 : 185, 34, 10;
10 : 388, 57, 10;
11 : 810, 113, 30, 6;
12 : 1670, 213, 52, 12;
13 : 3435, 396, 104, 28;
14 : 7040, 733, 176, 50;
15 : 14360, 1333, 278, 62;
16 : 29226, 2419, 512, 152, 24;
-
b:= proc(n, l) option remember;
`if`(n=0, 1, add(`if`(j in l, 0, b(n-j,
`if`(l=[], [], [subsop(1=NULL, l)[], j]))), j=1..n))
end:
T:= (n, k)-> b(n, [0$(k-1)])-b(n, [0$k]):
seq(seq(T(n, k), k=1..floor((sqrt(8*n-7)-1)/2)), n=2..20);
-
b[n_, l_] := b[n, l] = If[n == 0, 1, Sum[If[MemberQ[l, j], 0, b[n-j, If[l == {}, {}, Append[Rest[l], j]]]], {j, 1, n}]];
A[n_, k_] := b[n, Array[0&, Min[n, k]]];
T[n_, k_] := A[n, k-1] - A[n, k];
Table[T[n, k], {n, 2, 20}, {k, 1, Floor[(Sqrt[8*n-7]-1)/2]}] // Flatten (* Jean-François Alcover, Apr 13 2017, after Alois P. Heinz *)
A262192
Number of compositions of n such that the maximal distance between two identical parts equals one.
Original entry on oeis.org
0, 0, 1, 0, 3, 4, 5, 12, 21, 36, 43, 88, 133, 222, 331, 450, 753, 1120, 1703, 2508, 3753, 5010, 7807, 11020, 16243, 22974, 33277, 46764, 63639, 91822, 127943, 180048, 249585, 348204, 480361, 664618, 884833, 1237470, 1675087, 2299104, 3103203, 4234072, 5700371
Offset: 0
a(2) = 1: 11.
a(4) = 3: 22, 112, 211.
a(5) = 4: 113, 122, 221, 311.
a(6) = 5: 33, 114, 411, 1122, 2211.
a(7) = 12: 115, 133, 223, 322, 331, 511, 1123, 1132, 2113, 2311, 3112, 3211.
a(8) = 21: 44, 116, 224, 233, 332, 422, 611, 1124, 1133, 1142, 1223, 1322, 2114, 2213, 2231, 2411, 3122, 3221, 3311, 4112, 4211.
-
g:= proc(n, k) option remember; `if`(k<0 or n<0, 0,
`if`(k=0, `if`(n=0, 1, 0), g(n-k, k)+k*g(n-k, k-1)))
end:
b:= proc(n, i) option remember; expand(`if`(i*(i+1) (p-> add(coeff(p, x, i)*i!, i=0..degree(p)))(b(n$2))
-add(g(n, k), k=0..floor((sqrt(8*n+1)-1)/2)):
seq(a(n), n=0..50);
-
g[n_, k_] := g[n, k] = If[k < 0 || n < 0, 0, If[k == 0, If[n == 0, 1, 0], g[n - k, k] + k*g[n - k, k - 1]]];
b[n_, i_] := b[n, i] = Expand[If[i(i+1) < n, 0, If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*If[j == 0, 1, x], {j, 0, 2}]]]]];
a[n_] := With[{p = b[n, n]}, Sum[Coefficient[p, x, i]*i!, {i, 0, Exponent[p, x]}]] - Sum[g[n, k], {k, 0, Floor[(Sqrt[8n + 1] - 1)/2]}];
a /@ Range[0, 50] (* Jean-François Alcover, Dec 29 2020, after Alois P. Heinz *)
A262194
Number of compositions of n such that the maximal distance between two identical parts equals two.
Original entry on oeis.org
0, 0, 0, 1, 1, 4, 6, 13, 23, 42, 68, 119, 197, 324, 530, 823, 1305, 2040, 3162, 4869, 7431, 11076, 16680, 24831, 36785, 54210, 79546, 115967, 167359, 241726, 347184, 496235, 707681, 1004534, 1421178, 2003969, 2806921, 3929770, 5479406, 7617149, 10562169
Offset: 0
a(3) = 1: 111.
a(4) = 1: 121.
a(5) = 4: 131, 212, 1112, 2111.
a(6) = 6: 141, 222, 1113, 1212, 2121, 3111.
a(7) = 13: 151, 232, 313, 1114, 1213, 1222, 1312, 2131, 2221, 3121, 4111, 11122, 22111.
a(8) = 23: 161, 242, 323, 1115, 1214, 1232, 1313, 1412, 2123, 2141, 2321, 3131, 3212, 4121, 5111, 11123, 11132, 11222, 21113, 22211, 23111, 31112, 32111.
A262196
Number of compositions of n such that the maximal distance between two identical parts equals three.
Original entry on oeis.org
0, 1, 2, 6, 12, 25, 46, 88, 152, 267, 452, 764, 1260, 2049, 3314, 5272, 8354, 13077, 20366, 31302, 48048, 72849, 110244, 165354, 247194, 366703, 541802, 796066, 1164264, 1695201, 2457904, 3549244, 5104908, 7313739, 10437170, 14848936, 21041422, 29732907
Offset: 3
a(4) = 1: 1111.
a(5) = 2: 1121, 1211.
a(6) = 6: 1131, 1221, 1311, 2112, 11112, 21111.
a(7) = 12: 1141, 1231, 1321, 1411, 2122, 2212, 11113, 11212, 12112, 21121, 21211, 31111.
a(8) = 25: 1151, 1241, 1331, 1421, 1511, 2132, 2222, 2312, 3113, 11114, 11213, 11312, 12113, 12122, 12212, 13112, 21131, 21221, 21311, 22121, 31121, 31211, 41111, 111122, 221111.
A262197
Number of compositions of n such that the maximal distance between two identical parts equals four.
Original entry on oeis.org
0, 1, 3, 9, 21, 46, 92, 180, 330, 595, 1039, 1793, 3023, 5030, 8248, 13388, 21518, 34231, 54079, 84607, 131603, 203050, 311738, 474974, 720666, 1086125, 1629815, 2431647, 3612665, 5339710, 7860366, 11519856, 16816312, 24448029, 35409609
Offset: 4
a(5) = 1: 11111.
a(6) = 3: 11121, 11211, 12111.
a(7) = 9: 11131, 11221, 11311, 12121, 12211, 13111, 21112, 111112, 211111.
a(8) = 21: 11141, 11231, 11321, 11411, 12131, 12221, 12311, 13121, 13211, 14111, 21122, 21212, 22112, 111113, 111212, 112112, 121112, 211121, 211211, 212111, 311111.
A262200
Number of compositions of n such that the maximal distance between two identical parts equals five.
Original entry on oeis.org
0, 1, 4, 13, 34, 80, 172, 352, 682, 1277, 2314, 4103, 7112, 12120, 20302, 33582, 54860, 88699, 142036, 225407, 354938, 554698, 861366, 1328654, 2038498, 3108789, 4718194, 7122619, 10705550, 16012298, 23852554, 35374650, 52262054, 76898593
Offset: 5
a(6) = 1: 111111.
a(7) = 4: 111121, 111211, 112111, 121111.
a(8) = 13: 111131, 111221, 111311, 112121, 112211, 113111, 121121, 121211, 122111, 131111, 211112, 1111112, 2111111.
a(9) = 34: 111141, 111231, 111321, 111411, 112131, 112221, 112311, 113121, 113211, 114111, 121131, 121221, 121311, 122121, 122211, 123111, 131121, 131211, 132111, 141111, 211122, 211212, 212112, 221112, 1111113, 1111212, 1112112, 1121112, 1211112, 2111121, 2111211, 2112111, 2121111, 3111111.
Showing 1-7 of 7 results.
Comments