cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A241902 Decimal expansion of a constant related to Carlitz compositions (A003242).

Original entry on oeis.org

1, 7, 5, 0, 2, 4, 1, 2, 9, 1, 7, 1, 8, 3, 0, 9, 0, 3, 1, 2, 4, 9, 7, 3, 8, 6, 2, 4, 6, 3, 9, 8, 1, 5, 8, 7, 8, 7, 7, 8, 2, 0, 5, 8, 1, 8, 1, 3, 8, 1, 5, 9, 0, 5, 6, 1, 3, 1, 6, 5, 8, 6, 1, 3, 1, 7, 5, 1, 9, 3, 5, 1, 6, 7, 1, 5, 2, 0, 6, 0, 5, 0, 7, 7, 7, 4, 3, 8, 8, 7, 5, 6, 5, 7, 0, 9, 2, 4, 7, 1, 4, 1, 0, 0, 1
Offset: 1

Views

Author

Vaclav Kotesovec, May 01 2014

Keywords

Examples

			1.7502412917183090312497386246398158787782...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[r /. FindRoot[Exp[QPolyGamma[0, 1 + Pi*I/Log[r], r]] == r^(3/2)/(1-r), {r, 3/2}, WorkingPrecision -> 120], 10, 110][[1]] (* Vaclav Kotesovec, Jun 19 2023 *)

Formula

Equals lim n -> infinity A003242(n)^(1/n).

A261981 Number T(n,k) of compositions of n such that k is the minimal distance between two identical parts; triangle T(n,k), n>=2, 1<=k<=floor((sqrt(8*n-7)-1)/2), read by rows.

Original entry on oeis.org

1, 1, 4, 1, 9, 2, 18, 3, 41, 8, 2, 89, 16, 4, 185, 34, 10, 388, 57, 10, 810, 113, 30, 6, 1670, 213, 52, 12, 3435, 396, 104, 28, 7040, 733, 176, 50, 14360, 1333, 278, 62, 29226, 2419, 512, 152, 24, 59347, 4400, 878, 246, 48, 120229, 7934, 1492, 458, 108
Offset: 2

Views

Author

Alois P. Heinz, Sep 07 2015

Keywords

Examples

			T(5,1) = 9: 311, 113, 221, 122, 2111, 1211, 1121, 1112, 11111.
T(5,2) = 2: 131, 212.
T(7,2) = 8: 151, 313, 232, 3121, 1213, 2131, 1312, 12121.
T(7,3) = 2: 1231, 1321.
Triangle T(n,k) begins:
n\k:     1     2    3    4   5
---+---------------------------
02 :     1;
03 :     1;
04 :     4,    1;
05 :     9,    2;
06 :    18,    3;
07 :    41,    8,   2;
08 :    89,   16,   4;
09 :   185,   34,  10;
10 :   388,   57,  10;
11 :   810,  113,  30,   6;
12 :  1670,  213,  52,  12;
13 :  3435,  396, 104,  28;
14 :  7040,  733, 176,  50;
15 : 14360, 1333, 278,  62;
16 : 29226, 2419, 512, 152, 24;
		

Crossrefs

Columns k=1-2 give: A261983, A261984.
Row sums give A261982.

Programs

  • Maple
    b:= proc(n, l) option remember;
          `if`(n=0, 1, add(`if`(j in l, 0, b(n-j,
          `if`(l=[], [], [subsop(1=NULL, l)[], j]))), j=1..n))
        end:
    T:= (n, k)-> b(n, [0$(k-1)])-b(n, [0$k]):
    seq(seq(T(n, k), k=1..floor((sqrt(8*n-7)-1)/2)), n=2..20);
  • Mathematica
    b[n_, l_] := b[n, l] = If[n == 0, 1, Sum[If[MemberQ[l, j], 0, b[n-j, If[l == {}, {}, Append[Rest[l], j]]]], {j, 1, n}]];
    A[n_, k_] := b[n, Array[0&, Min[n, k]]];
    T[n_, k_] := A[n, k-1] - A[n, k];
    Table[T[n, k], {n, 2, 20}, {k, 1, Floor[(Sqrt[8*n-7]-1)/2]}] // Flatten (* Jean-François Alcover, Apr 13 2017, after Alois P. Heinz *)

Formula

T(n,k) = A261960(n,k-1) - A261960(n,k).
T((n+1)*(n+2)/2+1,n+1) = A000142(n) for n>=0.
Showing 1-2 of 2 results.