A261984 Number of compositions of n such that the minimal distance between two identical parts equals two.
0, 0, 0, 0, 1, 2, 3, 8, 16, 34, 57, 113, 213, 396, 733, 1333, 2419, 4400, 7934, 14321, 25687, 45947, 82085, 146410, 260547, 463021, 821669, 1456296, 2578051, 4559972, 8057373, 14225124, 25096606, 44246087, 77958821, 137283534, 241626535, 425079358, 747501363
Offset: 0
Keywords
Examples
a(4) = 1: 121. a(5) = 2: 131, 212. a(6) = 3: 141, 1212, 2121. a(7) = 8: 151, 232, 313, 1213, 1312, 2131, 3121, 12121. a(8) = 16: 161, 242, 323, 1214, 1232, 1313, 1412, 2123, 2141, 2321, 3131, 3212, 4121, 12131, 13121, 21212.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Crossrefs
Column k=2 of A261981.
Programs
-
Maple
g:= proc(n, i) option remember; `if`(n=0, 1, add( `if`(i=j, 0, g(n-j, j)), j=1..n)) end: b:= proc(n, i, m) option remember; `if`(n=0, 0, add( `if`(i=j, 0, `if`(j=m, g(n-j, j), b(n-j, j, i))), j=1..n)) end: a:= n-> b(n, 0$2): seq(a(n), n=0..45);
-
Mathematica
g[n_, i_] := g[n, i] = If[n==0, 1, Sum[If[i==j, 0, g[n-j, j]], {j, 1, n}]]; b[n_, i_, m_] := b[n, i, m] = If[n==0, 0, Sum[If[i==j, 0, If[j==m, g[n-j, j], b[n-j, j, i]]], {j, 1, n}]]; a[n_] := b[n, 0, 0]; a /@ Range[0, 45] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz *)
Formula
a(n) ~ A003242(n). - Vaclav Kotesovec, Sep 08 2015