cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A263529 Binomial transform of double factorial n!! (A006882).

Original entry on oeis.org

1, 2, 5, 13, 37, 111, 355, 1191, 4201, 15445, 59171, 234983, 966397, 4101709, 17946783, 80754331, 373286481, 1769440513, 8592681907, 42689422871, 216789872741, 1124107246669, 5947013363479, 32071798826115, 176194545585529, 985330955637801, 5605802379087067
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 19 2015

Keywords

Examples

			G.f. = 1 + 2*x + 5*x^2 + 13*x^3 + 37*x^4 + 111*x^5 + 355*x^6 + 1191*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[k!!*Binomial[n, k], {k, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Oct 20 2015 *)
  • PARI
    vector(50, n, n--; sum(k=0, n, prod(i=0, (k-1)\2, k - 2*i)*binomial(n,k))) \\ Altug Alkan, Oct 20 2015

Formula

a(n) = Sum_{k=0..n} k!!*binomial(n,k), where k!! = A006882(k).
Sum_{k=0..n} (-1)^(k+n)*a(k)*binomial(n,k) = n!!.
E.g.f.: exp(x) + exp((2*x+x^2)/2)*(2 + sqrt(2*Pi)*erf(x/sqrt(2)))*x/2.
Recurrence: (n+1)*a(n+2) = (n+2)*a(n+1) + (n+1)*(n+2)*a(n) - 1.
a(n) ~ (sqrt(2) + sqrt(Pi))/2 * n^(n/2 + 1/2) * exp(sqrt(n) - n/2 - 1/4). - Vaclav Kotesovec, Oct 20 2015
0 = a(n)*(+a(n+1) - 2*a(n+2) - 2*a(n+3) + a(n+4)) + a(n+1)*(+3*a(n+2) + a(n+3) - a(n+4)) + a(n+2)*(-2*a(n+2) + a(n+3)) for all n>=0. - Michael Somos, Oct 20 2015
G.f.: Sum_{k>=0} k!!*x^k/(1 - x)^(k+1). - Ilya Gutkovskiy, Apr 12 2019
Showing 1-1 of 1 results.