A262025
a(n) = (A262024(n)-1)/2: a(n)*(a(n) + 1) = d(n)*Y(n)^2 with d(n) = A007969 and Y(n) = A261250(n).
Original entry on oeis.org
1, 4, 2, 9, 3, 324, 7, 16, 8, 4, 27, 98, 25, 63, 4900, 5, 11, 17, 36, 18, 12, 1024, 6, 99, 80, 12167, 49, 324, 33124, 242, 44, 7, 75, 9801, 15, 883159524, 31, 64, 32, 16, 3887, 125, 8, 1140624, 1849, 28899, 175, 26, 81, 27, 142884, 5202, 250000, 9, 575, 6075, 1071647, 19, 31404816, 49, 100, 50, 20, 16040025, 675, 79035335993124, 10, 147, 63, 602176, 512, 4900, 324, 153458
Offset: 1
A261250
One half of the even entries of A033317.
Original entry on oeis.org
1, 2, 1, 3, 1, 90, 2, 4, 2, 1, 6, 21, 5, 12, 910, 1, 2, 3, 6, 3, 2, 160, 1, 15, 12, 1794, 7, 45, 4550, 33, 6, 1, 10, 1287, 2, 113076990, 4, 8, 4, 2, 468, 15, 1, 133500, 215, 3315, 20, 3, 9, 3, 15498, 561, 26500, 1, 60, 630, 110532, 2, 3188676, 5, 10, 5, 2, 1557945, 65, 7570212227550, 1, 14, 6, 56648, 48, 455, 30, 14127
Offset: 1
The [r(n), x0(n), y0(n)] values for n = 1..16 are:
[2, 3, 2], [5, 9, 4], [6, 5, 2], [10, 19, 6],
[12, 7, 2], [13, 649, 180], [14, 15, 4],
[17, 33, 8], [18, 17, 4], [20, 9, 2],
[21, 55, 12], [22, 197, 42], [26, 51, 10],
[28, 127, 24], [29, 9801, 1820], [30, 11, 2], ...
-
PellSolve[(m_Integer)?Positive] := Module[{cf, n, s}, cf = ContinuedFraction[ Sqrt[m]]; n = Length[Last[cf]]; If[n == 0, Return[{}]]; If[OddQ[n], n = 2 n]; s = FromContinuedFraction[ ContinuedFraction[ Sqrt[m], n]]; {Numerator[s], Denominator[s]}];
Select[DeleteCases[PellSolve /@ Range[200], {}][[All, 2]], EvenQ]/2 (* Jean-François Alcover, Aug 12 2023, using the PellSolve code given in A033317 *)
A261249
Number of classes of proper solutions of the Pell equation x^2 - D(n) y^2 = +4 for D(n) = A079896(n), n >= 1.
Original entry on oeis.org
2, 0, 1, 2, 0, 0, 2, 0, 1, 2, 1, 0, 0, 0, 0, 1, 2, 0, 0, 2, 0, 0, 1, 2, 0, 0, 2, 0, 0, 1, 2, 0, 0, 2, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 2, 0, 1, 2, 1, 0, 0, 2, 0, 0, 1, 0, 0, 0
Offset: 1
n=1: D(1) = 5 = A000037(3) with the a(1) = 2 proper positive fundamental solutions [x, y] = [3, 1] and [7, 3] for the two classes.
[x0(1), y0(1)] = [A033313(3), A033317(3)] = [9, 4], and (7, 3)^T = [[9, 4*5], [4, 9]] (3, -1)^T.
All other positive solutions in each of the two classes are obtained by applying positive powers of this matrix M(5) to the fundamental solutions.
The improper positive fundamental solution is [2*9, 2*4] = [18, 8].
n=2: D(2) = 8 = A000037(6) has a(2) = 0, hence there are only the improper solutions obtainable from [2*3, 2*1] = [6, 2], the smallest positive one. For this even D one has, with x = 2*X, X^2 - 8/4 y^2 = +1, which has an even positive fundamental solution y0 = 2, and r(2) = D(2)/4 = 2 is A007969(1).
- Nagell, T. Introduction to number theory, Chelsea Publishing Company, 1964, page 52.
Showing 1-3 of 3 results.
Comments