cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262033 Number of permutations of [n] beginning with at least floor(n/2) ascents.

Original entry on oeis.org

1, 1, 1, 3, 4, 20, 30, 210, 336, 3024, 5040, 55440, 95040, 1235520, 2162160, 32432400, 57657600, 980179200, 1764322560, 33522128640, 60949324800, 1279935820800, 2346549004800, 53970627110400, 99638080819200, 2490952020480000, 4626053752320000
Offset: 0

Views

Author

Alois P. Heinz, Sep 08 2015

Keywords

Examples

			a(4) = 4: 1234, 1243, 1342, 2341.
a(5) = 20: 12345, 12354, 12435, 12453, 12534, 12543, 13425, 13452, 13524, 13542, 14523, 14532, 23415, 23451, 23514, 23541, 24513, 24531, 34512, 34521.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 1,
          2*n*(n*(n-1)*a(n-2)-a(n-1))/((n+2)*(n-1)))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    a[n_] := n!/Ceiling[(n + 1)/2]!; Array[a, 30, 0] (* Amiram Eldar, Dec 04 2022 *)

Formula

E.g.f.: (x+1)*(exp(x^2)-1)/x^2.
a(n) = 2*n*(n*(n-1)*a(n-2)-a(n-1))/((n+2)*(n-1)) for n>1, a(0)=a(1)=1.
a(n) = n!/ceiling((n+1)/2)!.
a(2n) = A262034(2n) = A001761(n).
a(2n+1) = A006963(n+2).
Sum_{n>=0} 1/a(n) = 7/4 + 13*exp(1/4)*sqrt(Pi)*erf(1/2)/8, where erf is the error function. - Amiram Eldar, Dec 04 2022