A262034
Number of permutations of [n] beginning with at least ceiling(n/2) ascents.
Original entry on oeis.org
1, 0, 1, 1, 4, 5, 30, 42, 336, 504, 5040, 7920, 95040, 154440, 2162160, 3603600, 57657600, 98017920, 1764322560, 3047466240, 60949324800, 106661318400, 2346549004800, 4151586700800, 99638080819200, 177925144320000, 4626053752320000, 8326896754176000
Offset: 0
a(4) = 4: 1234, 1243, 1342, 2341.
a(5) = 5: 12345, 12354, 12453, 13452, 23451.
-
a:= proc(n) option remember; `if`(n<4, [1, 0, 1$2][n+1],
2*((n^2-1)*a(n-2)-a(n-1))/(n+3))
end:
seq(a(n), n=0..30);
-
np=Rest[With[{nn=30},CoefficientList[Series[(Exp[x^2](x+1)-x^4/2+x^2+x+1)/ x^3,{x,0,nn}],x] Range[0,nn]!]//Quiet];Join[{1},np] (* Harvey P. Dale, May 18 2019 *)
A262035
Number of permutations of [2n+1] beginning with exactly n ascents.
Original entry on oeis.org
1, 2, 15, 168, 2520, 47520, 1081080, 28828800, 882161280, 30474662400, 1173274502400, 49819040409600, 2313026876160000, 116576554558464000, 6338850154116480000, 369890550169620480000, 23056510960573009920000, 1529010726859052236800000
Offset: 0
a(0) = 1: 1.
a(1) = 2: 132, 231.
a(2) = 15: 12435, 12534, 12543, 13425, 13524, 13542, 14523, 14532, 23415, 23514, 23541, 24513, 24531, 34512, 34521.
A329964
a(n) = (n!/floor(1+n/2)!)^2.
Original entry on oeis.org
1, 1, 1, 9, 16, 400, 900, 44100, 112896, 9144576, 25401600, 3073593600, 9032601600, 1526509670400, 4674935865600, 1051860569760000, 3324398837760000, 960751264112640000, 3112834095724953600, 1123733108556708249600, 3714820193575895040000
Offset: 0
-
A329964 := n -> (n!/floor(1+n/2)!)^2:
seq(A329964(n), n=0..20);
-
a[n_] := (n!/Floor[1 + n/2]!)^2; Array[a, 20, 0] (* Amiram Eldar, Dec 04 2022 *)
A329965
a(n) = ((1+n)*floor(1+n/2))*(n!/floor(1+n/2)!)^2.
Original entry on oeis.org
1, 2, 6, 72, 240, 7200, 25200, 1411200, 5080320, 457228800, 1676505600, 221298739200, 821966745600, 149597947699200, 560992303872000, 134638152929280000, 508633022177280000, 155641704786247680000, 591438478187741184000, 224746621711341649920000
Offset: 0
-
A329965 := n -> ((1+n)*floor(1+n/2))*(n!/floor(1+n/2)!)^2:
seq(A329965(n), n=0..19);
-
ser := Series[(1 - Sqrt[1 - 4 x^2] - 4 x^2 (1 - x - Sqrt[1 - 4 x^2]))/(2 x^2 (1 - 4 x^2)^(3/2)), {x, 0, 22}]; Table[n! Coefficient[ser, x, n], {n, 0, 20}]
Table[(1+n)Floor[1+n/2](n!/Floor[1+n/2]!)^2,{n,0,30}] (* Harvey P. Dale, Oct 01 2023 *)
-
from fractions import Fraction
def A329965():
x, n = 1, Fraction(1)
while True:
yield int(x)
m = n if n % 2 else 4/(n+2)
n += 1
x *= m * n
a = A329965(); [next(a) for i in range(36)]
Showing 1-4 of 4 results.