cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262046 Number of ordered partitions of [n] such that at least two adjacent parts have the same size.

Original entry on oeis.org

0, 0, 2, 6, 54, 460, 3890, 42364, 512806, 6698724, 98496252, 1585046584, 27568171818, 520043947020, 10550553510016, 228796551051436, 5291441028244966, 129967582592816500, 3377869204044947060, 92652519380506887784, 2674716530794339146244
Offset: 0

Views

Author

Alois P. Heinz, Sep 09 2015

Keywords

Comments

All terms are even.

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n<2, 1,
           add(binomial(n, k)*g(k), k=0..n-1))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 0, add(
          `if`(i=j, g(n-j), b(n-j, j))*binomial(n, j), j=1..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..25);
  • Mathematica
    g[n_] := g[n] = If[n<2, 1, Sum[Binomial[n, k]*g[k], {k, 0, n-1}]]; b[n_, i_] := b[n, i] = If[n==0, 0, Sum[If[i==j, g[n-j], b[n-j, j]]*Binomial[n, j], {j, 1, n}]]; a[n_] := b[n, 0]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 15 2017, translated from Maple *)

Formula

a(n) ~ n! / (2 * (log(2))^(n+1)). - Vaclav Kotesovec, Nov 27 2017