A262046 Number of ordered partitions of [n] such that at least two adjacent parts have the same size.
0, 0, 2, 6, 54, 460, 3890, 42364, 512806, 6698724, 98496252, 1585046584, 27568171818, 520043947020, 10550553510016, 228796551051436, 5291441028244966, 129967582592816500, 3377869204044947060, 92652519380506887784, 2674716530794339146244
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..424
Programs
-
Maple
g:= proc(n) option remember; `if`(n<2, 1, add(binomial(n, k)*g(k), k=0..n-1)) end: b:= proc(n, i) option remember; `if`(n=0, 0, add( `if`(i=j, g(n-j), b(n-j, j))*binomial(n, j), j=1..n)) end: a:= n-> b(n, 0): seq(a(n), n=0..25);
-
Mathematica
g[n_] := g[n] = If[n<2, 1, Sum[Binomial[n, k]*g[k], {k, 0, n-1}]]; b[n_, i_] := b[n, i] = If[n==0, 0, Sum[If[i==j, g[n-j], b[n-j, j]]*Binomial[n, j], {j, 1, n}]]; a[n_] := b[n, 0]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 15 2017, translated from Maple *)
Formula
a(n) ~ n! / (2 * (log(2))^(n+1)). - Vaclav Kotesovec, Nov 27 2017
Comments