cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A261983 Number of compositions of n such that at least two adjacent parts are equal.

Original entry on oeis.org

0, 0, 1, 1, 4, 9, 18, 41, 89, 185, 388, 810, 1670, 3435, 7040, 14360, 29226, 59347, 120229, 243166, 491086, 990446, 1995410, 4016259, 8076960, 16231746, 32599774, 65437945, 131293192, 263316897, 527912140, 1058061751, 2120039885, 4246934012, 8505864640
Offset: 0

Views

Author

Alois P. Heinz, Sep 07 2015

Keywords

Examples

			a(5) = 9: 311, 113, 221, 122, 2111, 1211, 1121, 1112, 11111.
From _Gus Wiseman_, Jul 07 2020: (Start)
The a(2) = 1 through a(6) = 18 compositions:
  (1,1)  (1,1,1)  (2,2)      (1,1,3)      (3,3)
                  (1,1,2)    (1,2,2)      (1,1,4)
                  (2,1,1)    (2,2,1)      (2,2,2)
                  (1,1,1,1)  (3,1,1)      (4,1,1)
                             (1,1,1,2)    (1,1,1,3)
                             (1,1,2,1)    (1,1,2,2)
                             (1,2,1,1)    (1,1,3,1)
                             (2,1,1,1)    (1,2,2,1)
                             (1,1,1,1,1)  (1,3,1,1)
                                          (2,1,1,2)
                                          (2,2,1,1)
                                          (3,1,1,1)
                                          (1,1,1,1,2)
                                          (1,1,1,2,1)
                                          (1,1,2,1,1)
                                          (1,2,1,1,1)
                                          (2,1,1,1,1)
                                          (1,1,1,1,1,1)
(End)
		

Crossrefs

Column k=1 of A261981.
The complement A003242 counts anti-runs.
Sum of positive-indexed terms of row n of A106356.
Row sums of A131044.
The (1,1,1) matching case is A335464.
Strict compositions are A032020.
Compositions with adjacent parts coprime are A167606.
Compositions with equal parts contiguous are A274174.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 0, add(
          `if`(i=j, ceil(2^(n-j-1)), b(n-j, j)), j=1..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..40);
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],MatchQ[#,{_,x_,x_,_}]&]],{n,0,10}] (* Gus Wiseman, Jul 06 2020 *)
    b[n_, i_] := b[n, i] = If[n == 0, 0, Sum[If[i == j, Ceiling[2^(n-j-1)], b[n-j, j]], {j, 1, n}]];
    a[n_] := b[n, 0];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Nov 20 2023, after Alois P. Heinz's Maple code *)

Formula

a(n) ~ 2^(n-1). - Vaclav Kotesovec, Sep 08 2015
a(n) = A011782(n) - A003242(n). - Emeric Deutsch, Jul 03 2020

A357136 Triangle read by rows where T(n,k) is the number of integer compositions of n with alternating sum k = 0..n. Part of the full triangle A097805.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 3, 0, 3, 0, 1, 0, 6, 0, 4, 0, 1, 10, 0, 10, 0, 5, 0, 1, 0, 20, 0, 15, 0, 6, 0, 1, 35, 0, 35, 0, 21, 0, 7, 0, 1, 0, 70, 0, 56, 0, 28, 0, 8, 0, 1, 126, 0, 126, 0, 84, 0, 36, 0, 9, 0, 1, 0, 252, 0, 210, 0, 120, 0, 45, 0, 10, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 30 2022

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			Triangle begins:
    1
    0   1
    1   0   1
    0   2   0   1
    3   0   3   0   1
    0   6   0   4   0   1
   10   0  10   0   5   0   1
    0  20   0  15   0   6   0   1
   35   0  35   0  21   0   7   0   1
    0  70   0  56   0  28   0   8   0   1
  126   0 126   0  84   0  36   0   9   0   1
    0 252   0 210   0 120   0  45   0  10   0   1
  462   0 462   0 330   0 165   0  55   0  11   0   1
    0 924   0 792   0 495   0 220   0  66   0  12   0   1
For example, row n = 5 counts the following compositions:
  .  (32)     .  (41)   .  (5)
     (122)       (113)
     (221)       (212)
     (1121)      (311)
     (2111)
     (11111)
		

Crossrefs

The full triangle counting compositions by alternating sum is A097805.
The version for partitions is A103919, full triangle A344651.
This is the right-half of even-indexed rows of A260492.
The triangle without top row and left column is A108044.
Ranking and counting compositions:
- product = sum: A335404, counted by A335405.
- sum = twice alternating sum: A348614, counted by A262977.
- length = alternating sum: A357184, counted by A357182.
- length = absolute value of alternating sum: A357185, counted by A357183.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A025047 counts alternating compositions, ranked by A345167.
A032020 counts strict compositions, ranked by A233564.
A124754 gives alternating sums of standard compositions.
A238279 counts compositions by sum and number of maximal runs.

Programs

  • Mathematica
    Prepend[Table[If[EvenQ[nn],Prepend[#,0],#]&[Riffle[Table[Binomial[nn,k],{k,Floor[nn/2],nn}],0]],{nn,0,10}],{1}]

A348612 Numbers k such that the k-th composition in standard order is not an anti-run, i.e., has adjacent equal parts.

Original entry on oeis.org

3, 7, 10, 11, 14, 15, 19, 21, 23, 26, 27, 28, 29, 30, 31, 35, 36, 39, 42, 43, 46, 47, 51, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 67, 71, 73, 74, 75, 78, 79, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 99, 100, 103, 106, 107, 110, 111, 112, 113, 114, 115, 116
Offset: 1

Views

Author

Gus Wiseman, Nov 03 2021

Keywords

Comments

First differs from A345168 in lacking 37, corresponding to the composition (3,2,1).
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.

Examples

			The terms and corresponding standard compositions begin:
     3: (1,1)          35: (4,1,1)        61: (1,1,1,2,1)
     7: (1,1,1)        36: (3,3)          62: (1,1,1,1,2)
    10: (2,2)          39: (3,1,1,1)      63: (1,1,1,1,1,1)
    11: (2,1,1)        42: (2,2,2)        67: (5,1,1)
    14: (1,1,2)        43: (2,2,1,1)      71: (4,1,1,1)
    15: (1,1,1,1)      46: (2,1,1,2)      73: (3,3,1)
    19: (3,1,1)        47: (2,1,1,1,1)    74: (3,2,2)
    21: (2,2,1)        51: (1,3,1,1)      75: (3,2,1,1)
    23: (2,1,1,1)      53: (1,2,2,1)      78: (3,1,1,2)
    26: (1,2,2)        55: (1,2,1,1,1)    79: (3,1,1,1,1)
    27: (1,2,1,1)      56: (1,1,4)        83: (2,3,1,1)
    28: (1,1,3)        57: (1,1,3,1)      84: (2,2,3)
    29: (1,1,2,1)      58: (1,1,2,2)      85: (2,2,2,1)
    30: (1,1,1,2)      59: (1,1,2,1,1)    86: (2,2,1,2)
    31: (1,1,1,1,1)    60: (1,1,1,3)      87: (2,2,1,1,1)
		

Crossrefs

Constant run compositions are counted by A000005, ranked by A272919.
Counting these compositions by sum and length gives A131044.
These compositions are counted by A261983.
The complement is A333489, counted by A003242.
The non-alternating case is A345168, complement A345167.
A011782 counts compositions, strict A032020.
A238279 counts compositions by sum and number of maximal runs.
A274174 counts compositions with equal parts contiguous.
A336107 counts non-anti-run permutations of prime factors.
A345195 counts non-alternating anti-runs, ranked by A345169.
For compositions in standard order (rows of A066099):
- Length is A000120.
- Sum is A070939
- Maximal runs are counted by A124767.
- Strict compositions are ranked by A233564.
- Maximal anti-runs are counted by A333381.
- Runs-resistance is A333628.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[100],MatchQ[stc[#],{_,x_,x_,_}]&]

A357182 Number of integer compositions of n with the same length as their alternating sum.

Original entry on oeis.org

1, 1, 0, 0, 1, 3, 1, 4, 6, 20, 13, 48, 50, 175, 141, 512, 481, 1719, 1491, 5400, 4929, 17776, 15840, 57420, 52079, 188656, 169989, 617176, 559834, 2033175, 1842041, 6697744, 6085950, 22139780, 20123989, 73262232, 66697354, 242931321, 221314299, 806516560
Offset: 0

Views

Author

Gus Wiseman, Sep 28 2022

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			The a(1) = 1 through a(8) = 6 compositions:
  (1)  (31)  (113)  (42)  (124)  (53)
             (212)        (223)  (1151)
             (311)        (322)  (2141)
                          (421)  (3131)
                                 (4121)
                                 (5111)
		

Crossrefs

For product instead of length we have A114220.
For sum equal to twice alternating sum we have A262977, ranked by A348614.
For product equal to sum we have A335405, ranked by A335404.
For absolute value we have A357183.
These compositions are ranked by A357184.
The case of partitions is A357189.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A025047 counts alternating compositions, ranked by A345167.
A124754 gives alternating sums of standard compositions.
A238279 counts compositions by sum and number of maximal runs.
A261983 counts non-anti-run compositions.
A357136 counts compositions by alternating sum.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[#]==ats[#]&]],{n,0,15}]

Extensions

a(21)-a(39) from Alois P. Heinz, Sep 29 2022

A357189 Number of integer partitions of n with the same length as alternating sum.

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 1, 2, 2, 4, 3, 5, 6, 9, 9, 13, 16, 23, 23, 34, 37, 54, 54, 78, 84, 120, 121, 170, 182, 252, 260, 358, 379, 517, 535, 725, 764, 1030, 1064, 1427, 1494, 1992, 2059, 2733, 2848, 3759, 3887, 5106, 5311, 6946, 7177, 9345, 9701, 12577, 12996, 16788
Offset: 0

Views

Author

Gus Wiseman, Sep 30 2022

Keywords

Comments

A partition of n is a weakly decreasing sequence of positive integers summing to n.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			The a(4) = 1 through a(13) = 9 partitions:
  31   311   42   322   53     333     64     443     75       553
                  421   5111   432     5221   542     5331     652
                               531     6211   641     6222     751
                               51111          52211   6321     52222
                                              62111   7311     53311
                                                      711111   62221
                                                               63211
                                                               73111
                                                               7111111
		

Crossrefs

For product equal to sum we have A001055, compositions A335405.
For product instead of length we have A004526, compositions A114220.
The version for compositions is A357182, ranked by A357184.
For sum equal to twice alternating sum we have A357189 (this sequence).
These partitions are ranked by A357486.
The reverse version is A357487, ranked by A357485.
A000041 counts partitions, strict A000009.
A025047 counts alternating compositions.
A103919 counts partitions by alternating sum, full triangle A344651.
A357136 counts compositions by alternating sum, full triangle A097805.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],Length[#]==ats[#]&]],{n,0,30}]

A357184 Numbers k such that the k-th composition in standard order has the same length as its alternating sum.

Original entry on oeis.org

0, 1, 9, 19, 22, 28, 34, 69, 74, 84, 104, 132, 135, 141, 153, 177, 225, 265, 271, 274, 283, 286, 292, 307, 310, 316, 328, 355, 358, 364, 376, 400, 451, 454, 460, 472, 496, 520, 523, 526, 533, 538, 553, 562, 593, 610, 673, 706, 833, 898, 1041, 1047, 1053, 1058
Offset: 1

Views

Author

Gus Wiseman, Sep 28 2022

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			The sequence together with the corresponding compositions begins:
    0: ()
    1: (1)
    9: (3,1)
   19: (3,1,1)
   22: (2,1,2)
   28: (1,1,3)
   34: (4,2)
   69: (4,2,1)
   74: (3,2,2)
   84: (2,2,3)
  104: (1,2,4)
  132: (5,3)
  135: (5,1,1,1)
  141: (4,1,2,1)
  153: (3,1,3,1)
  177: (2,1,4,1)
  225: (1,1,5,1)
		

Crossrefs

See link for sequences related to standard compositions.
For product equal to sum we have A335404, counted by A335405.
For sum equal to twice alternating sum we have A348614, counted by A262977.
These compositions are counted by A357182.
For absolute value we have A357184, counted by A357183.
The case of partitions is counted by A357189.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A025047 counts alternating compositions, ranked by A345167.
A032020 counts strict compositions, ranked by A233564.
A124754 gives alternating sums of standard compositions.
A238279 counts compositions by sum and number of maximal runs.
A357136 counts compositions by alternating sum.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],Length[stc[#]]==ats[stc[#]]&]

A357488 Number of integer partitions of 2n - 1 with the same length as alternating sum.

Original entry on oeis.org

1, 0, 1, 2, 4, 5, 9, 13, 23, 34, 54, 78, 120, 170, 252, 358, 517, 725, 1030, 1427, 1992, 2733, 3759, 5106, 6946, 9345, 12577, 16788, 22384, 29641, 39199, 51529, 67626, 88307, 115083, 149332, 193383, 249456, 321134, 411998, 527472, 673233, 857539, 1089223, 1380772
Offset: 1

Views

Author

Gus Wiseman, Oct 02 2022

Keywords

Comments

A partition of n is a weakly decreasing sequence of positive integers summing to n.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			The a(1) = 1 through a(7) = 9 partitions:
  (1)  .  (311)  (322)  (333)    (443)    (553)
                 (421)  (432)    (542)    (652)
                        (531)    (641)    (751)
                        (51111)  (52211)  (52222)
                                 (62111)  (53311)
                                          (62221)
                                          (63211)
                                          (73111)
                                          (7111111)
		

Crossrefs

For product equal to sum we have A001055, compositions A335405.
The version for compositions appears to be A222763, odd version of A357182.
These are the odd-indexed terms of A357189, ranked by A357486.
These partitions are ranked by the odd-sum portion of A357485.
Except at the start, alternately adding zeros gives A357487.
A000041 counts partitions, strict A000009.
A025047 counts alternating compositions.
A103919 counts partitions by alternating sum, full triangle A344651.
A357136 counts compositions by alternating sum, full triangle A097805.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],Length[#]==ats[#]&]],{n,1,30,2}]

Formula

a(n) = A357189(2n - 1).

Extensions

More terms from Alois P. Heinz, Oct 04 2022

A357183 Number of integer compositions with the same length as the absolute value of their alternating sum.

Original entry on oeis.org

1, 1, 0, 0, 2, 3, 2, 5, 12, 22, 26, 58, 100, 203, 282, 616, 962, 2045, 2982, 6518, 9858, 21416, 31680, 69623, 104158, 228930, 339978, 751430, 1119668, 2478787, 3684082, 8182469, 12171900, 27082870, 40247978, 89748642, 133394708, 297933185, 442628598, 990210110
Offset: 0

Views

Author

Gus Wiseman, Sep 28 2022

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			The a(1) = 1 through a(8) = 12 compositions:
  (1)  (13)  (113)  (24)  (124)  (35)
       (31)  (212)  (42)  (151)  (53)
             (311)        (223)  (1115)
                          (322)  (1151)
                          (421)  (1214)
                                 (1313)
                                 (1412)
                                 (1511)
                                 (2141)
                                 (3131)
                                 (4121)
                                 (5111)
		

Crossrefs

For product instead of length we have A114220.
For sum equal to twice alternating sum we have A262977, ranked by A348614.
For product equal to sum we have A335405, ranked by A335404.
This is the absolute value version of A357182.
These compositions are ranked by A357185.
The case of partitions is A357189.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A025047 counts alternating compositions, ranked by A345167.
A124754 gives alternating sums of standard compositions.
A238279 counts compositions by sum and number of maximal runs.
A261983 counts non-anti-run compositions.
A357136 counts compositions by alternating sum.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[#]==Abs[ats[#]]&]],{n,0,15}]

Extensions

a(21)-a(39) from Alois P. Heinz, Sep 29 2022

A357485 Heinz numbers of integer partitions with the same length as reverse-alternating sum.

Original entry on oeis.org

1, 2, 20, 42, 45, 105, 110, 125, 176, 182, 231, 245, 312, 374, 396, 429, 494, 605, 663, 680, 702, 780, 782, 845, 891, 969, 1064, 1088, 1100, 1102, 1311, 1426, 1428, 1445, 1530, 1755, 1805, 1820, 1824, 1950, 2001, 2024, 2146, 2156, 2394, 2448, 2475, 2508, 2542
Offset: 1

Views

Author

Gus Wiseman, Oct 01 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^i y_i.

Examples

			The terms together with their prime indices begin:
     1: {}
     2: {1}
    20: {1,1,3}
    42: {1,2,4}
    45: {2,2,3}
   105: {2,3,4}
   110: {1,3,5}
   125: {3,3,3}
   176: {1,1,1,1,5}
   182: {1,4,6}
   231: {2,4,5}
   245: {3,4,4}
   312: {1,1,1,2,6}
   374: {1,5,7}
   396: {1,1,2,2,5}
		

Crossrefs

The version for compositions is A357184, counted by A357182.
These partitions are counted by A357189.
For absolute value we have A357486, counted by A357487.
A000041 counts partitions, strict A000009.
A000712 up to 0's counts partitions w sum = twice alt sum, ranked A349159.
A001055 counts partitions with product equal to sum, ranked by A301987.
A006330 up to 0's counts partitions w sum = twice rev-alt sum, rank A349160.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[100],PrimeOmega[#]==ats[primeMS[#]]&]

A357487 Number of integer partitions of n with the same length as reverse-alternating sum.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 0, 2, 0, 4, 0, 5, 0, 9, 0, 13, 0, 23, 0, 34, 0, 54, 0, 78, 0, 120, 0, 170, 0, 252, 0, 358, 0, 517, 0, 725, 0, 1030, 0, 1427, 0, 1992, 0, 2733, 0, 3759, 0, 5106, 0, 6946, 0, 9345, 0, 12577, 0, 16788, 0, 22384, 0, 29641, 0
Offset: 0

Views

Author

Gus Wiseman, Oct 01 2022

Keywords

Comments

A partition of n is a weakly decreasing sequence of positive integers summing to n.
The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^i y_i.

Examples

			The a(1) = 1 through a(13) = 9 partitions:
  1   .  .  .  311   .  322   .  333     .  443     .  553
                        421      432        542        652
                                 531        641        751
                                 51111      52211      52222
                                            62111      53311
                                                       62221
                                                       63211
                                                       73111
                                                       7111111
		

Crossrefs

For product equal to sum we have A001055, compositions A335405.
The version for compositions is A357182, reverse ranked by A357184.
The reverse version is A357189, ranked by A357486.
These partitions are ranked by A357485.
Removing zeros gives A357488.
A000041 counts partitions, strict A000009.
A025047 counts alternating compositions.
A103919 counts partitions by alternating sum, full triangle A344651.
A357136 counts compositions by alternating sum, full triangle A097805.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],Length[#]==ats[Reverse[#]]&]],{n,0,30}]
Showing 1-10 of 14 results. Next