A357136 Triangle read by rows where T(n,k) is the number of integer compositions of n with alternating sum k = 0..n. Part of the full triangle A097805.
1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 3, 0, 3, 0, 1, 0, 6, 0, 4, 0, 1, 10, 0, 10, 0, 5, 0, 1, 0, 20, 0, 15, 0, 6, 0, 1, 35, 0, 35, 0, 21, 0, 7, 0, 1, 0, 70, 0, 56, 0, 28, 0, 8, 0, 1, 126, 0, 126, 0, 84, 0, 36, 0, 9, 0, 1, 0, 252, 0, 210, 0, 120, 0, 45, 0, 10, 0, 1
Offset: 0
Examples
Triangle begins: 1 0 1 1 0 1 0 2 0 1 3 0 3 0 1 0 6 0 4 0 1 10 0 10 0 5 0 1 0 20 0 15 0 6 0 1 35 0 35 0 21 0 7 0 1 0 70 0 56 0 28 0 8 0 1 126 0 126 0 84 0 36 0 9 0 1 0 252 0 210 0 120 0 45 0 10 0 1 462 0 462 0 330 0 165 0 55 0 11 0 1 0 924 0 792 0 495 0 220 0 66 0 12 0 1 For example, row n = 5 counts the following compositions: . (32) . (41) . (5) (122) (113) (221) (212) (1121) (311) (2111) (11111)
Crossrefs
The full triangle counting compositions by alternating sum is A097805.
This is the right-half of even-indexed rows of A260492.
The triangle without top row and left column is A108044.
Ranking and counting compositions:
A011782 counts compositions.
A124754 gives alternating sums of standard compositions.
A238279 counts compositions by sum and number of maximal runs.
Programs
-
Mathematica
Prepend[Table[If[EvenQ[nn],Prepend[#,0],#]&[Riffle[Table[Binomial[nn,k],{k,Floor[nn/2],nn}],0]],{nn,0,10}],{1}]
Comments