cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A262058 Least integer k>1 such that sqrt(k)/log(k) exceeds n.

Original entry on oeis.org

2, 2, 289, 681, 1280, 2109, 3190, 4538, 6170, 8100, 10339, 12901, 15795, 19032, 22620, 26570, 30888, 35583, 40662, 46133, 52003, 58277, 64962, 72065, 79590, 87544, 95932, 104759, 114030, 123750, 133924, 144557, 155652, 167215, 179250, 191760
Offset: 1

Views

Author

Robert G. Wilson v, Sep 09 2015

Keywords

Crossrefs

Programs

  • Maple
    A262058 := proc(n)
        Digits := 30 ;
        for k from 2 do
            if evalf(sqrt(k) > n*log(k)) then
                return k;
            end if;
        end do:
    end proc: # R. J. Mathar, Oct 22 2015
  • Mathematica
    f[n_] := f[n] = Block[{k = f[n - 1]}, While[n > Sqrt[k]/Log[k], k++]; k]; f[1] = 2; Array[f, 50]
  • PARI
    a(n) = {my(k = 2); while(sqrt(k)/log(k) <= n, k++); k;} \\ Michel Marcus, Sep 10 2015
    
  • Sage
    def A262058(n,d=50):
        (low,high) = (1,2)
        while N(sqrt(high),digits=d) <= N(n*log(high),digits=d):
            high *= 2
        while low+1Danny Rorabaugh, Sep 26 2015

A262059 Least integer k such that k^(1/3)/log(k) exceeds n.

Original entry on oeis.org

2, 4913, 29410, 96854, 236916, 484596, 879483, 1465239, 2289183, 3401984, 4857388, 6712006, 9025131, 11858570, 15276512, 19345406, 24133846, 29712478, 36153913, 43532644, 51924974, 61408954, 72064316, 83972419, 97216198, 111880113, 128050105, 145813554, 165259239, 186477301, 209559205
Offset: 1

Views

Author

Robert G. Wilson v, Sep 09 2015

Keywords

Crossrefs

Programs

  • Maple
    A262059val := proc(k)
        Digits := 100 ;
        evalf(root[3](k)/log(k)) ;
    end proc:
    A262059lims := proc(n,lowk,highk)
        local vallow, valhigh,midk,valmid ;
        vallow := A262059val(lowk) ;
        valhigh := A262059val(highk) ;
        if valhigh > n and vallow <= n and highk= lowk+1 then
            return highk;
        else
            midk := floor((lowk+highk)/2) ;
            valmid := A262059val(midk) ;
            if valmid < n then
                return procname(n,midk,highk) ;
            else
                return procname(n,lowk,midk) ;
            end if;
        end if;
    end proc:
    A262059 := proc(n)
        local lowk,highk,p ;
        if n = 1 then
            return 2;
        end if;
        for p from 0 do
            lowk := 10^p ;
            highk := 10^(p+1) ;
            if A262059val(highk) >=n then
                return A262059lims(n,min(2,lowk),highk) ;
            end if;
        end do:
    end proc: # R. J. Mathar, Oct 22 2015
  • Mathematica
    f[n_] := f[n] = Block[{k = f[n - 1]}, While[n > k^(1/3)/Log[k], k++]; k]; f[1] = 2; Array[f, 40]
  • PARI
    a(n) = {my(k = 2); while(sqrtn(k,3)/log(k) <= n, k++); k;} \\ Michel Marcus, Sep 10 2015
Showing 1-2 of 2 results.