A262095 Number of non-semiprime divisors of n.
1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 4, 2, 3, 3, 4, 2, 4, 2, 4, 3, 3, 2, 6, 2, 3, 3, 4, 2, 5, 2, 5, 3, 3, 3, 6, 2, 3, 3, 6, 2, 5, 2, 4, 4, 3, 2, 8, 2, 4, 3, 4, 2, 6, 3, 6, 3, 3, 2, 8, 2, 3, 4, 6, 3, 5, 2, 4, 3, 5, 2, 9, 2, 3, 4, 4, 3, 5, 2, 8, 4, 3, 2, 8, 3, 3, 3, 6, 2, 8, 3, 4, 3, 3, 3, 10, 2
Offset: 1
Examples
(1, 2, 3, 4, 6, 8, 12, 24) are the divisors of n = 24: 1, 2, 3, 8, 12, and 24 are non-semiprimes, therefore a(24) = 6.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a262095 = sum . map ((1 -) . a064911) . a027750_row -- Reinhard Zumkeller, Sep 14 2015
-
Mathematica
Table[Count[Divisors@ n, x_ /; PrimeOmega@ x != 2], {n, 97}] (* Michael De Vlieger, Sep 14 2015 *)
-
PARI
a(n) = sumdiv(n, d, bigomega(d)!=2); \\ Michel Marcus, Sep 11 2015
-
PARI
a(n)=my(f=factor(n)[,2]); prod(i=1,#f,f[i]+1) - sum(i=1,#f,f[i]>1) - #f*(#f-1)/2 \\ Charles R Greathouse IV, Sep 14 2015