cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262095 Number of non-semiprime divisors of n.

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 4, 2, 3, 3, 4, 2, 4, 2, 4, 3, 3, 2, 6, 2, 3, 3, 4, 2, 5, 2, 5, 3, 3, 3, 6, 2, 3, 3, 6, 2, 5, 2, 4, 4, 3, 2, 8, 2, 4, 3, 4, 2, 6, 3, 6, 3, 3, 2, 8, 2, 3, 4, 6, 3, 5, 2, 4, 3, 5, 2, 9, 2, 3, 4, 4, 3, 5, 2, 8, 4, 3, 2, 8, 3, 3, 3, 6, 2, 8, 3, 4, 3, 3, 3, 10, 2
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Sep 11 2015

Keywords

Examples

			(1, 2, 3, 4, 6, 8, 12, 24) are the divisors of n = 24: 1, 2, 3, 8, 12, and 24 are non-semiprimes, therefore a(24) = 6.
		

Crossrefs

Programs

  • Haskell
    a262095 = sum . map ((1 -) . a064911) . a027750_row
    -- Reinhard Zumkeller, Sep 14 2015
  • Mathematica
    Table[Count[Divisors@ n, x_ /; PrimeOmega@ x != 2], {n, 97}] (* Michael De Vlieger, Sep 14 2015 *)
  • PARI
    a(n) = sumdiv(n, d, bigomega(d)!=2); \\ Michel Marcus, Sep 11 2015
    
  • PARI
    a(n)=my(f=factor(n)[,2]); prod(i=1,#f,f[i]+1) - sum(i=1,#f,f[i]>1) - #f*(#f-1)/2 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

a(n) = A000005(n) - A086971(n).
A083399(n) <= a(n) <= A000005(n).
a(n) = Sum_{k=1..A000005(n)} (1 - A064911(A027750(n,k))). - Reinhard Zumkeller, Sep 14 2015