cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262125 Number T(n,k) of permutations p of [n] such that the up-down signature of p has nonnegative partial sums with a maximal value of k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 0, 2, 1, 0, 0, 5, 3, 1, 0, 0, 16, 24, 4, 1, 0, 0, 61, 101, 57, 5, 1, 0, 0, 272, 862, 311, 123, 6, 1, 0, 0, 1385, 4743, 3857, 778, 254, 7, 1, 0, 0, 7936, 47216, 27589, 14126, 1835, 514, 8, 1, 0, 0, 50521, 322039, 355751, 111811, 47673, 4189, 1031, 9, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 11 2015

Keywords

Examples

			T(4,1) = 5: 1324, 1423, 2314, 2413, 3412.
T(4,2) = 3: 1243, 1342, 2341.
T(4,3) = 1: 1234.
Triangle T(n,k) begins:
  1;
  1,    0;
  0,    1,    0;
  0,    2,    1,    0;
  0,    5,    3,    1,   0;
  0,   16,   24,    4,   1,   0;
  0,   61,  101,   57,   5,   1, 0;
  0,  272,  862,  311, 123,   6, 1, 0;
  0, 1385, 4743, 3857, 778, 254, 7, 1, 0;
		

Crossrefs

Columns k=1-10 give: A000111 (for n>1), A320976, A320977, A320978, A320979, A320980, A320981, A320982, A320983, A320984.
Row sums give A000246.
T(2n,n) gives A262127.

Programs

  • Maple
    b:= proc(u, o, c) option remember; `if`(c<0, 0, `if`(u+o=0, x^c,
          (p-> add(coeff(p, x, i)*x^max(i, c), i=0..degree(p)))(add(
           b(u-j, o-1+j, c-1), j=1..u)+add(b(u+j-1, o-j, c+1), j=1..o))))
        end:
    T:= n-> `if`(n=0, 1, (p-> seq(coeff(p, x, i), i=0..n)
                 )(add(b(j-1, n-j, 0), j=1..n))):
    seq(T(n), n=0..10);
  • Mathematica
    b[u_, o_, c_] := b[u, o, c] = If[c<0, 0, If[u+o==0, x^c, Sum[Coefficient[ #, x, i]*x^Max[i, c], {i, 0, Exponent[#, x]}]]& @ Sum[b[u-j, o-1+j, c-1], {j, 1, u}] + Sum[b[u+j-1, o-j, c+1], {j, 1, o}]];
    T[n_] := If[n==0, {1}, Table[Coefficient[#, x, i], {i, 0, n}]]& @ Sum[b[j-1, n-j, 0], {j, 1, n}];
    T /@ Range[0, 10] // Flatten (* Jean-François Alcover, Jan 19 2020, after Alois P. Heinz *)

Formula

T(n,k) = A262124(n,k) - A262124(n,k-1) for k>0, T(n,0) = A262124(n,0).