A262144 Square array read by antidiagonals upwards: the n-th row o.g.f. is exp( Sum_{i >= 1} d(n,i+1)*x^i/i ) for n >= 1, where d(n,k) is Shanks's array of generalized Euler and class numbers.
1, 1, 2, 1, 11, 10, 1, 46, 241, 108, 1, 128, 2739, 10411, 2214, 1, 272, 16384, 265244, 836321, 75708, 1, 522, 64964, 2883584, 45094565, 112567243, 3895236, 1, 904, 212325, 18852096, 822083584, 12975204810, 22949214033
Offset: 1
Examples
The triangular array begins 1 1 2 1 11 10 1 46 241 108 1 128 2739 10411 2214 1 272 16384 265244 836321 75708 1 522 64964 2883584 45094565 112567243 3895236 1 904 212325 18852096 822083584 12975204810 22949214033 ... The square array begins (row indexing n starts at 1) 1, 2, 10, 108, 2214, 75708, 3895236, 280356120, 26824493574, ... 1, 11, 241, 10411, 836321, 112567243, 22949214033, 6571897714923, 2507281057330113, ... 1, 46, 2739, 265244, 45094565, 12975204810, 5772785327575, 3656385436507960, 3107332328608143945, ... 1, 128, 16384, 2883584, 822083584, 395136991232, 300338473074688, 330739694704787456, 493338658405976375296, ... 1, 272, 64864, 18852096, 8133183744, 5766226378752, 6562478680375296, 11019751545852395520, 25333348417380699340800, ... 1, 522, 212325, 94501768, 57064909374, 54459242196516, 84430282319806062, 197625548666434041000, 642556291067409622713543, ... 1, 904, 586452, 382674008, 311514279098, 379982635729752, 753288329161251844, 2308779464340711480136, 10003494921382094286802995, ...
Links
- P. Bala, Notes on logarithmic differentiation, the binomial transform and series reversion
- William Y. C. Chen, Neil J. Y. Fan, Jeffrey Y. T. Jia , The generating function for the Dirichlet series Lm(s) Mathematics of Computation, Vol. 81, No. 278, April 2012.
- D. Shanks, Generalized Euler and class numbers. Math. Comp. 21 (1967) 689-694.
- D. Shanks, Corrigenda to: "Generalized Euler and class numbers", Math. Comp. 22 (1968), 699.
- D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689-694; 22 (1968), 699. [Annotated scanned copy]
Comments