cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A262145 O.g.f.: exp( Sum_{n >= 1} A000182(n+1)*x^n/n ), where A000182 is the sequence of tangent numbers.

Original entry on oeis.org

1, 2, 10, 108, 2214, 75708, 3895236, 280356120, 26824493574, 3287849716332, 501916845156012, 93337607623037544, 20766799390944491100, 5446109742113077482456, 1662395457873577922274888
Offset: 0

Views

Author

Peter Bala, Sep 13 2015

Keywords

Comments

It appears that the sequence has integer entries. Calculation suggests the following conjecture: the expansion of exp( Sum_{n >= 1} A000182(n + m)*x^n/n ) has integer coefficients for m = 1, 2, 3, .... This is the case m = 1. Cf. A255881 and A255895.
First row of square array A262144.

Crossrefs

Cf. A000182, A255881, A255895, A262144 (first row).

Programs

  • Maple
    #A262145
    #define tangent numbers A000182
    A000182 := n -> (1/2) * 2^(2*n) * (2^(2*n) - 1) * abs(bernoulli(2*n))/n:
    a := proc (n) option remember;
    if n = 0 then 1 else
      add(A000182(k+1)*a(n-k), k = 1 .. n)/n
    end if;
    end proc:
    seq(a(n), n = 0 .. 15);
  • Mathematica
    max = 15; CoefficientList[E^Sum[(-1)^n*2^(2*n+1)*(4^(n+1)-1)*BernoulliB[2*(n+1)]*x^n / (n*(n+1)), {n, 1, max}] + O[x]^max, x] (* Jean-François Alcover, Sep 18 2015 *)
  • Sage
    def a_list(n):
        T = [0]*(n+2); T[1] = 1
        for k in range(2, n+1): T[k] = (k-1)*T[k-1]
        for k in range(2, n+1):
            for j in range(k, n+1): T[j] = (j-k)*T[j-1]+(j-k+2)*T[j]
        @cached_function
        def a(n): return sum(T[k+1]*a(n-k) for k in (1..n))//n if n> 0 else 1
        return [a(k) for k in range(n)]
    a_list(15) # Peter Luschny, Sep 18 2015

Formula

Recurrence: a(n) = 1/n * Sum_{k = 1..n} A000182(k+1)*a(n-k).

A262143 Square array read by antidiagonals upwards: the n-th row o.g.f. is exp( Sum_{i >= 1} c(n,i)*x^i/i ) for n >= 1, where c(n,k) is Shanks' array of generalized Euler and class numbers.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 8, 33, 23, 1, 16, 208, 1011, 371, 1, 30, 768, 14336, 65985, 10515, 1, 46, 2211, 94208, 2091520, 7536099, 461869, 1, 64, 5043, 412860, 24313856, 535261184, 1329205857, 28969177, 1, 96, 9984, 1361948, 164276421, 11025776640, 211966861312, 334169853267, 2454072147
Offset: 1

Views

Author

Peter Bala, Sep 13 2015

Keywords

Comments

Shanks' array c(n,k) n >= 1, k >= 0, is A235605.
We conjecture that the entries of the present array are all integers. More generally, we conjecture that for r = 0,1,2,... and for each n >= 1, the expansion of exp( Sum_{i >= 1} c(n,i + r)*x^i/i ) has integer coefficients. The case n = 1 was conjectured by Hanna in A255895.
For the similarly defined array associated with Shanks' d(n,k) array see A262144.

Examples

			The square array begins (row indexing n starts at 1)
1  1    3      23        371         10515           461869 ..
1  3   33    1011      65985       7536099       1329205857 ..
1  8  208   14336    2091520     535261184     211966861312 ..
1 16  768   94208   24313856   11025776640    7748875976704 ..
1 30 2211  412860  164276421  115699670490  126686112278631 ..
1 46 5043 1361948  778121381  787337024970 1239870854518999 ..
1 64 9984 3716096 2891509760 3978693525504 8522989918683136 ..
...
Array as a triangle
1
1  1
1  3    3
1  8   33      23
1 16  208    1011      371
1 30  768   14336    65985        10515
1 46 2211   94208  2091520      7536099       461869
1 64 5043  412860  24313856   535261184   1329205857 28969177
1 96 9984 1361948 164276421 11025776640 211966861312 ...
...
		

Crossrefs

Cf. A000233 (column 1), A000364 (c(1,n)), A000281 (c(2,n)), A000436 (c(3,n)), A000490 (c(4,n)), A000187 (c(5,n)), A000192 (c(6,n)), A064068 (c(7,n)), A235605, A235606, A255881, A255895, A262144, A262145.
Showing 1-2 of 2 results.