cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262153 Decimal expansion of Sum_{p prime} 1/(2^p-1), a prime equivalent of the Erdős-Borwein constant.

Original entry on oeis.org

5, 1, 6, 9, 4, 2, 8, 1, 9, 8, 0, 5, 6, 4, 0, 3, 8, 4, 2, 4, 0, 5, 1, 6, 6, 0, 8, 4, 7, 9, 8, 5, 6, 2, 7, 7, 9, 7, 8, 5, 4, 6, 9, 4, 7, 9, 1, 3, 0, 9, 1, 2, 4, 1, 6, 5, 0, 2, 8, 0, 2, 4, 5, 8, 7, 1, 2, 3, 8, 0, 7, 5, 3, 4, 1, 1, 3, 6, 0, 3, 7, 7, 1, 9, 8, 1, 8, 0, 2, 8, 0, 5, 4, 0, 2, 5, 0, 8, 8, 2
Offset: 0

Views

Author

Jean-François Alcover, Sep 13 2015

Keywords

Comments

Erdős was interested in the question whether this constant is irrational. - Amiram Eldar, Apr 30 2020
Pratt gives a conditional proof that this constant is irrational. - Charles R Greathouse IV, Sep 26 2024

Examples

			0.51694281980564038424051660847985627797854694791309124165028...
		

References

  • Paul Erdős, Some of my favourite unsolved problems, in A. Baker, B. Bollobás and A. Hajnal (eds.), A Tribute to Paul Erdős, Cambridge University Press, 1990, p. 470.

Crossrefs

Programs

  • Mathematica
    digits = 100; m0 = 100; dm = 100; s[m_] := s[m] = N[Sum[1/(2^Prime[n]-1), {n, 1, m}], digits+10]; s[m = m0]; Print[{m, s[m]}]; s[m = m + dm]; While[ Print[{m, s[m]}]; RealDigits[ s[m], 10, digits+5] != RealDigits[ s[m - dm], 10, digits+5], m = m + dm]; RealDigits[ s[m], 10, digits] // First
  • PARI
    suminf(k=1, omega(k)/2^k) \\ Michel Marcus, Apr 30 2020
    
  • PARI
    s=0.; forprime(p=2,bitprecision(1.)+1,s+=1./(2^p-1)); s \\ Charles R Greathouse IV, Sep 26 2024

Formula

Equals Sum_{i>=1} 1/A001348(i). - R. J. Mathar, Feb 17 2016
Equals Sum_{k>=1} omega(k)/2^k, where omega(k) is the number of distinct primes dividing k (A001221). - Amiram Eldar, Apr 30 2020