cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262178 Decimal expansion of Sum_{k>=0} (-1)^k/(3*k+1)^2.

Original entry on oeis.org

9, 5, 1, 5, 1, 7, 7, 1, 3, 4, 1, 6, 4, 1, 5, 0, 4, 1, 8, 6, 6, 4, 8, 2, 8, 3, 1, 4, 7, 2, 7, 4, 1, 5, 3, 1, 5, 4, 4, 7, 2, 8, 5, 0, 8, 2, 3, 2, 6, 9, 7, 0, 5, 1, 3, 3, 0, 0, 3, 2, 4, 3, 1, 5, 2, 9, 6, 1, 1, 3, 4, 3, 0, 2, 2, 7, 5, 8, 3, 0, 2, 1, 9, 9, 3, 4, 7, 4, 8, 9, 3, 7
Offset: 0

Views

Author

Bruno Berselli, Sep 14 2015

Keywords

Comments

Also, decimal expansion of Sum_{h>=0} Sum_{j=0..h} (-1)^j*binomial(h, j)/(4*(1 + h)*(1 + 6*j)*(2 + 3*j)).

Examples

			1 - 1/16 + 1/49 - 1/100 + 1/169 - 1/256 + 1/361 - 1/484 + ...
0.9515177134164150418664828314727415315447285082326970513300324315296113...
		

Crossrefs

Cf. A006752.
Cf. A113476: Sum_{k>=0} (-1)^k/(3*k+1).
Cf. A226735: Sum_{k>=0} (-1)^k/(3*k+1)^3.

Programs

  • Mathematica
    RealDigits[(Zeta[2, 1/6] - Zeta[2, 2/3])/36, 10, 100][[1]]
  • PARI
    sumalt(k=0, (-1)^k/(3*k+1)^2) \\ Michel Marcus, Sep 14 2015
    
  • PARI
    zetahurwitz(2,1/6)/36 - zetahurwitz(2,2/3)/36 \\ Charles R Greathouse IV, Jan 31 2018

Formula

Equals (zeta(2, 1/6) - zeta(2, 2/3))/36, where zeta(s,a) is the Hurwitz zeta function.