cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262191 Number T(n,k) of compositions of n such that k is the maximal distance between two identical parts; triangle T(n,k), n>=2, 1<=k<=n-1, read by rows.

Original entry on oeis.org

1, 0, 1, 3, 1, 1, 4, 4, 2, 1, 5, 6, 6, 3, 1, 12, 13, 12, 9, 4, 1, 21, 23, 25, 21, 13, 5, 1, 36, 42, 46, 46, 34, 18, 6, 1, 43, 68, 88, 92, 80, 52, 24, 7, 1, 88, 119, 152, 180, 172, 132, 76, 31, 8, 1, 133, 197, 267, 330, 352, 304, 208, 107, 39, 9, 1
Offset: 2

Views

Author

Alois P. Heinz, Sep 14 2015

Keywords

Examples

			T(6,1) = 5: 33, 114, 411, 1122, 2211.
T(6,2) = 6: 141, 222, 1113, 1212, 2121, 3111.
T(6,3) = 6: 1131, 1221, 1311, 2112, 11112, 21111.
T(6,4) = 3: 11121, 11211, 12111.
T(6,5) = 1: 111111.
Triangle T(n,k) begins:
n\k:   1    2    3    4    5    6    7    8   9  10  11
---+----------------------------------------------------
02 :   1;
03 :   0,   1;
04 :   3,   1,   1;
05 :   4,   4,   2,   1;
06 :   5,   6,   6,   3,   1;
07 :  12,  13,  12,   9,   4,   1;
08 :  21,  23,  25,  21,  13,   5,   1;
09 :  36,  42,  46,  46,  34,  18,   6,   1;
10 :  43,  68,  88,  92,  80,  52,  24,   7,  1;
11 :  88, 119, 152, 180, 172, 132,  76,  31,  8,  1;
12 : 133, 197, 267, 330, 352, 304, 208, 107, 39,  9,  1;
		

Crossrefs

Column k=1-5 gives A262192, A262194, A262196, A262197, A262200.
Row sums give A261982.
Cf. A261981.

Programs

  • Maple
    b:= proc(n, s, l) option remember; `if`(n=0, 1, add(
          `if`(j in s, 0, b(n-j, s union {`if`(l=[], j, l[1])},
          `if`(l=[], [], [subsop(1=NULL, l)[], j]))), j=1..n))
        end:
    T:= (n, k)-> b(n, {}, [0$k]) -b(n, {}, [0$(k-1)]):
    seq(seq(T(n, k), k=1..n-1), n=2..14);
  • Mathematica
    b[n_, s_, l_] := b[n, s, l] = If[n==0, 1, Sum[If[MemberQ[s, j], 0, b[n-j, s ~Union~ {If[l=={}, j, l[[1]]]}, If[l=={}, {}, Append[Rest[l], j]]]], {j, 1, n}]]; T[n_, k_] := b[n, {}, Array[0&, k]] - b[n, {}, Array[0&, k-1]]; Table[T[n, k], {n, 2, 14}, { k, 1, n-1}] // Flatten (* Jean-François Alcover, Feb 08 2017, translated from Maple *)