A262202 Number of divisors d | n such that d^2 < n and d^2 does not divide n.
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 3, 0, 0, 1, 1, 1, 1, 0, 1, 1, 2, 0, 3, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 1, 2, 1, 1, 0, 4, 0, 1, 1, 0, 1, 3, 0, 1, 1, 3, 0, 2, 0, 1, 1, 1, 1, 3, 0, 2, 0, 1, 0, 4, 1, 1, 1, 2, 0, 4, 1, 1, 1, 1, 1, 3, 0
Offset: 1
Keywords
Examples
a(6) = 1 because (1, 4, 9, 36) are squares of divisors of 6 and only 4 is proper non-divisor of 6.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= n -> nops(select(t -> (t^2 < n) and (n mod t^2 <> 0), numtheory:-divisors(n))): map(f, [$1..100]); # Robert Israel, Sep 22 2015
-
Mathematica
f[n_] := Block[{d = Divisors@ n}, Select[d^2, And[Mod[n, #] != 0, # < n] &]]; Length@ f@ # & /@ Range@ 120 (* Michael De Vlieger, Sep 15 2015 *)
-
PARI
a(n) = sumdiv(n, d, (d^2 < n) && (n % d^2)); \\ Michel Marcus, Sep 15 2015
Extensions
Definition and a(80) corrected by Charles R Greathouse IV, Sep 15 2015
Comments