cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262207 a(n) = prime(n)^n mod n^n.

Original entry on oeis.org

0, 1, 17, 97, 1676, 21241, 214259, 5020449, 34808102, 7233300201, 46070142226, 7806783217105, 165239209697109, 1608006723911113, 48560388990668468, 4867006141797699265, 530779430908845468654, 18442832496573633213385
Offset: 1

Views

Author

Altug Alkan, Sep 15 2015

Keywords

Comments

Inspired by A002380, A067602, A138654.
a(3), a(4), a(7) and a(48) are prime numbers.
There are no further prime numbers up to a(1000). - Harvey P. Dale, Jun 15 2025

Examples

			For n = 1, a(n) = prime(1)^1 mod 1^1 = 2^1 mod 1 = 2 mod 1 = 0.
For n = 2, a(n) = prime(2)^2 mod 2^2 = 3^2 mod 4 = 9 mod 4 = 1.
For n = 3, a(n) = prime(3)^3 mod 3^3 = 5^3 mod 27 = 125 mod 27 = 17.
		

Crossrefs

Programs

  • Mathematica
    Table[Mod[Prime[n]^n, n^n], {n, 18}] (* Michael De Vlieger, Sep 15 2015 *)
    Table[PowerMod[Prime[n],n,n^n],{n,20}] (* Harvey P. Dale, Jun 15 2025 *)
  • PARI
    a(n) = (prime(n)^n) % (n^n);
    vector(18, n, a(n))

Formula

a(n) = A062457(n) mod A000312(n). - Michel Marcus, Sep 15 2015