A262209 Inverse Möbius transform of A002654.
1, 2, 1, 3, 3, 2, 1, 4, 2, 6, 1, 3, 3, 2, 3, 5, 3, 4, 1, 9, 1, 2, 1, 4, 6, 6, 2, 3, 3, 6, 1, 6, 1, 6, 3, 6, 3, 2, 3, 12, 3, 2, 1, 3, 6, 2, 1, 5, 2, 12, 3, 9, 3, 4, 3, 4, 1, 6, 1, 9, 3, 2, 2, 7, 9, 2, 1, 9, 1, 6, 1, 8, 3, 6, 6, 3, 1, 6, 1, 15, 3, 6, 1, 3, 9
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[2, e_] := e + 1; f[p_, e_] := If[Mod[p, 4] == 1, (e + 1)*(e + 2)/2, Floor[e/2] + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 01 2025 *)
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1] == 2, f[i, 2] + 1, if(f[i, 1] % 4 == 1, (f[i, 2]+1)*(f[i, 2]+2)/2, f[i, 2]\2 + 1)));} \\ Amiram Eldar, Feb 01 2025
Formula
G.f.: Sum_{k>=1} tau(k)*x^k/(1 + x^(2*k)), where tau = A000005. - Ilya Gutkovskiy, Sep 14 2019
From Amiram Eldar, Feb 01 2025: (Start)
a(n) = Sum_{d|n} A002654(d).