cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262209 Inverse Möbius transform of A002654.

Original entry on oeis.org

1, 2, 1, 3, 3, 2, 1, 4, 2, 6, 1, 3, 3, 2, 3, 5, 3, 4, 1, 9, 1, 2, 1, 4, 6, 6, 2, 3, 3, 6, 1, 6, 1, 6, 3, 6, 3, 2, 3, 12, 3, 2, 1, 3, 6, 2, 1, 5, 2, 12, 3, 9, 3, 4, 3, 4, 1, 6, 1, 9, 3, 2, 2, 7, 9, 2, 1, 9, 1, 6, 1, 8, 3, 6, 6, 3, 1, 6, 1, 15, 3, 6, 1, 3, 9
Offset: 1

Views

Author

R. J. Mathar, Sep 15 2015

Keywords

Crossrefs

Programs

  • Mathematica
    f[2, e_] := e + 1; f[p_, e_] := If[Mod[p, 4] == 1, (e + 1)*(e + 2)/2, Floor[e/2] + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 01 2025 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1] == 2, f[i, 2] + 1, if(f[i, 1] % 4 == 1, (f[i, 2]+1)*(f[i, 2]+2)/2, f[i, 2]\2 + 1)));} \\ Amiram Eldar, Feb 01 2025

Formula

G.f.: Sum_{k>=1} tau(k)*x^k/(1 + x^(2*k)), where tau = A000005. - Ilya Gutkovskiy, Sep 14 2019
From Amiram Eldar, Feb 01 2025: (Start)
a(n) = Sum_{d|n} A002654(d).
Multiplicative with a(p^e) = e+1 if p = 2, a(p^e) = floor(e/2) + 1 if p == 3 (mod 4) (A002145), and a(p^e) = (e+1)*(e+2)/2 if p == 1 (mod 4) (A002144). (End)