A262235 Denominators of a series leading to Euler's constant gamma.
4, 72, 32, 14400, 1728, 2540160, 138240, 261273600, 896000, 10538035200, 209018880, 407994402816000, 5633058816000, 941525544960000, 4723310592, 8707228239790080000, 6162712657920000, 17473102222724628480000, 107559878256230400000, 14162409169997856768000000
Offset: 1
Examples
Denominators of 1/4, 5/72, 1/32, 251/14400, 19/1728, 19087/2540160, ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..250
- Iaroslav V. Blagouchine, Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to 1/pi, Journal of Mathematical Analysis and Applications (Elsevier), 2016. arXiv version, arXiv:1408.3902 [math.NT], 2014-2016.
- Iaroslav V. Blagouchine, Expansions of generalized Euler's constants into the series of polynomials in 1/pi^2 and into the formal enveloping series with rational coefficients only. Journal of Number Theory (Elsevier), vol. 158, pp. 365-396, 2016. arXiv version, arXiv:1501.00740 [math.NT], 2015.
Programs
-
Maple
a := proc(n) local r; r := proc(n) option remember; if n=0 then 1 else 1 - add(r(k)/(n-k+1), k=0..n-1) fi end: denom(r(n)/(n*(n+1))) end: seq(a(n), n=1..20); # Peter Luschny, Apr 19 2018
-
Mathematica
g[n_] := Sum[Abs[StirlingS1[n, l]]/(l + 1), {l, 1, n}]/(n*(n + 1)!); a[n_] := Denominator[g[n]]; Table[a[n], {n, 1, 20}]
Comments