A262257 Minimal number of editing steps (delete, insert or substitute) to transform n in decimal representation into the largest palindrome <= n.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 0, 1, 1, 2, 2, 2, 2, 2, 2
Offset: 0
Examples
. n | A261423(n) | a(n) n | A261423(n) | a(n) . -----+------------+----- ------+------------+------- . 100 | 99 | 3 1000 | 999 | 4 . 101 | 101 | 0 1001 | 1001 | 0 . 102 | 101 | 1 1002 | 1001 | 1 . 103 | 101 | 1 1003 | 1001 | 1 . 104 | 101 | 1 1004 | 1001 | 1 . 105 | 101 | 1 1005 | 1001 | 1 . 106 | 101 | 1 1006 | 1001 | 1 . 107 | 101 | 1 1007 | 1001 | 1 . 108 | 101 | 1 1008 | 1001 | 1 . 109 | 101 | 1 1009 | 1001 | 1 . 110 | 101 | 2 1010 | 1001 | 2 . 111 | 111 | 0 1011 | 1001 | 1 . 112 | 111 | 1 1012 | 1001 | 2 . 113 | 111 | 1 1013 | 1001 | 2 . 114 | 111 | 1 1014 | 1001 | 2 . 115 | 111 | 1 1015 | 1001 | 2 . 116 | 111 | 1 1016 | 1001 | 2 . 117 | 111 | 1 1017 | 1001 | 2 . 118 | 111 | 1 1018 | 1001 | 2 . 119 | 111 | 1 1019 | 1001 | 2 . 120 | 111 | 2 1020 | 1001 | 2 . 121 | 121 | 0 1021 | 1001 | 1 . 122 | 121 | 1 1022 | 1001 | 2 . 123 | 121 | 1 1023 | 1001 | 2 . 124 | 121 | 1 1024 | 1001 | 2 . 125 | 121 | 1 1025 | 1001 | 2 .
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Palindromic Number
- WikiBooks: Algorithm Implementation, Levenshtein Distance
- Wikipedia, Levenshtein Distance
- Wikipedia, Palindromic number
- Index entries for sequences related to palindromes
Programs
-
Haskell
import Data.Function (on); import Data.List (genericIndex) a262257 n = genericIndex a262257_list n a262257_list = zipWith (levenshtein `on` show) [0..] a261423_list where levenshtein us vs = last $ foldl transform [0..length us] vs where transform xs@(x:xs') c = scanl compute (x+1) (zip3 us xs xs') where compute z (c', x, y) = minimum [y+1, z+1, x + fromEnum (c' /= c)]
Comments