A262276 Decimal expansion of Toth's constant (the density of the exponentially squarefree numbers).
9, 5, 5, 9, 2, 3, 0, 1, 5, 8, 6, 1, 9, 0, 2, 3, 7, 6, 8, 8, 4, 0, 6, 5, 3, 8, 6, 7, 0, 9, 8, 7, 0, 0, 7, 4, 6, 7, 7, 1, 5, 9, 4, 3, 1, 6, 5, 4, 5, 6, 8, 6, 8, 8, 3, 2, 8, 0, 5, 8, 9, 4, 9, 0, 1, 8, 1, 7, 2, 8, 7, 0, 1, 5, 5, 2, 2, 9, 2, 5, 7, 1, 0, 3, 5, 7, 2, 0, 0, 5, 5, 9, 1, 1, 6, 4, 4, 0, 3, 5, 2, 3, 0, 1, 2, 9, 3, 3, 4, 7, 1, 7, 1, 5, 8, 0, 1, 2, 2, 4, 3, 6, 3, 9, 8, 9, 3, 3, 8, 8, 1, 2, 0, 3, 8, 6, 6, 0, 1, 3, 2, 8, 6, 3, 2, 6, 7, 5, 2, 0, 6, 6, 3, 5, 8, 0, 2, 7, 1, 7, 9, 6, 0
Offset: 0
Examples
0.95592301586190237688406538670987007467715943165456868832805...
Links
- Vladimir Shevelev, A fast computation of density of exponentially S-numbers, arXiv:1602.04244 [math.NT], 2016.
- László Tóth, On certain arithmetic functions involving exponential divisors, II., Annales Univ. Sci. Budapest., Sect. Comp., 27 (2007), 155-166.
Programs
-
Mathematica
$MaxExtraPrecision = m = 1000; f[x_] := Log[1 - x^4 + (1 - x)*Sum[x^e*(MoebiusMu[e]^2), {e, 4, m}]]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[Exp[NSum[Indexed[c, k]*PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 163][[1]] (* Amiram Eldar, Apr 27 2025 *)
Formula
Equals Product_{prime p} (1+Sum_{j>=4} (mu(j)^2 - mu(j-1)^2)/p^j), where mu(n) is the Möbius function.