A262307 Array read by antidiagonals: T(m,n) = number of m X n binary matrices with all 1's connected and no zero rows or columns.
1, 1, 1, 1, 5, 1, 1, 19, 19, 1, 1, 65, 205, 65, 1, 1, 211, 1795, 1795, 211, 1, 1, 665, 14221, 36317, 14221, 665, 1, 1, 2059, 106819, 636331, 636331, 106819, 2059, 1, 1, 6305, 778765, 10365005, 23679901, 10365005, 778765, 6305, 1
Offset: 1
Examples
Table starts: ========================================================================== m\n| 1 2 3 4 5 6 7 ---|---------------------------------------------------------------------- 1 | 1 1 1 1 1 1 1 ... 2 | 1 5 19 65 211 665 2059 ... 3 | 1 19 205 1795 14221 106819 778765 ... 4 | 1 65 1795 36317 636331 10365005 162470155 ... 5 | 1 211 14221 636331 23679901 805351531 26175881341 ... 6 | 1 665 106819 10365005 805351531 56294206205 3735873535339 ... 7 | 1 2059 778765 162470155 26175881341 3735873535339 502757743028605 ... ... As a triangle, this begins: 1; 1, 1; 1, 5, 1; 1, 19, 19, 1; 1, 65, 205, 65, 1; 1, 211, 1795, 1795, 211, 1; 1, 665, 14221, 36317, 14221, 665, 1; 1, 2059, 106819, 636331, 636331, 106819, 2059, 1; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..780
- G. Kreweras, Inversion des polynômes de Bell bidimensionnels et application au dénombrement des relations binaires connexes, C. R. Acad. Sci. Paris Ser. A-B 268 1969 A577-A579.
Crossrefs
Programs
-
Mathematica
A183109[n_, m_] := Sum[(-1)^j*Binomial[m, j]*(2^(m-j) - 1)^n, {j, 0, m}]; T[m_, n_] := A183109[m, n] - Sum[T[i, j]*A183109[m - i, n - j] Binomial[m - 1, i - 1]*Binomial[n, j], {i, 1, m - 1}, {j, 1, n - 1}]; Table[T[m - n + 1, n], {m, 1, 9}, {n, 1, m}] // Flatten (* Jean-François Alcover, Oct 08 2017, after Andrew Howroyd *)
-
PARI
G(N)={my(S=matrix(N,N), T=matrix(N,N)); for(m=1,N,for(n=1,N, S[m,n]=sum(j=0, m, (-1)^j*binomial(m, j)*(2^(m - j) - 1)^n); T[m,n]=S[m,n]-sum(i=1, m-1, sum(j=1, n-1, T[i,j]*S[m-i,n-j]*binomial(m-1,i-1)*binomial(n,j))); ));T} G(7) \\ Andrew Howroyd, May 22 2017
Formula
T(m,n) = A183109(m,n) - Sum_{i=1..m-1} Sum_{j=1..n-1} T(i,j)*A183109(m-i, n-j)*binomial(m-1,i-1)*binomial(n,j). - Andrew Howroyd, May 22 2017
Extensions
Revised by N. J. A. Sloane, May 26 2017, to incorporate material from Andrew Howroyd's May 22 2017 submission (formerly A287297), which was essentially identical to this, although giving an alternative description and more information.
Comments