A262321 Number of ways to select a subset s containing n from {1,...,n} and then partition s into blocks of equal size.
1, 1, 3, 7, 18, 43, 118, 337, 1025, 3479, 13056, 48817, 199477, 898135, 4051128, 18652459, 93872040, 492132207, 2658676056, 14841915049, 84757413959, 517609038551, 3384739112196, 21742333893177, 141230605251082, 1001795869162783, 7387581072984938
Offset: 0
Keywords
Examples
a(0) = 1: {}. a(1) = 1: 1. a(2) = 3: 2, 12, 1|2. a(3) = 7: 3, 13, 1|3, 23, 2|3, 123, 1|2|3. a(4) = 18: 4, 14, 1|4, 24, 2|4, 34, 3|4, 124, 1|2|4, 134, 1|3|4, 234, 2|3|4, 1234, 12|34, 13|24, 14|23, 1|2|3|4.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..616
Crossrefs
First differences of A262320.
Programs
-
Maple
b:= proc(n) option remember; n!*`if`(n=0, 1, add(1/(d!*(n/d)!^d), d=numtheory[divisors](n))) end: a:= n-> add(b(k)*binomial(n-1, k-1), k=0..n): seq(a(n), n=0..30);
-
Mathematica
b[n_] := b[n] = n!*If[n == 0, 1, DivisorSum[n, 1/(#!*(n/#)!^#)&]]; a[n_] := Sum[b[k]*Binomial[n-1, k-1], {k, 0, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 28 2017, translated from Maple *)
Formula
E.g.f.: A(x) - Integral_{x} A(x) dx, with A(x) = e.g.f. of A262320.
Comments