cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262321 Number of ways to select a subset s containing n from {1,...,n} and then partition s into blocks of equal size.

Original entry on oeis.org

1, 1, 3, 7, 18, 43, 118, 337, 1025, 3479, 13056, 48817, 199477, 898135, 4051128, 18652459, 93872040, 492132207, 2658676056, 14841915049, 84757413959, 517609038551, 3384739112196, 21742333893177, 141230605251082, 1001795869162783, 7387581072984938
Offset: 0

Views

Author

Alois P. Heinz, Sep 18 2015

Keywords

Comments

a(0) = 1 by convention.

Examples

			a(0) = 1: {}.
a(1) = 1: 1.
a(2) = 3: 2, 12, 1|2.
a(3) = 7: 3, 13, 1|3, 23, 2|3, 123, 1|2|3.
a(4) = 18: 4, 14, 1|4, 24, 2|4, 34, 3|4, 124, 1|2|4, 134, 1|3|4, 234, 2|3|4, 1234, 12|34, 13|24, 14|23, 1|2|3|4.
		

Crossrefs

First differences of A262320.

Programs

  • Maple
    b:= proc(n) option remember; n!*`if`(n=0, 1,
           add(1/(d!*(n/d)!^d), d=numtheory[divisors](n)))
        end:
    a:= n-> add(b(k)*binomial(n-1, k-1), k=0..n):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_] := b[n] = n!*If[n == 0, 1, DivisorSum[n, 1/(#!*(n/#)!^#)&]];
    a[n_] :=  Sum[b[k]*Binomial[n-1, k-1], {k, 0, n}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 28 2017, translated from Maple *)

Formula

E.g.f.: A(x) - Integral_{x} A(x) dx, with A(x) = e.g.f. of A262320.